論文の概要: From Texts to Shields: Convergence of Large Language Models and Cybersecurity
- arxiv url: http://arxiv.org/abs/2505.00841v1
- Date: Thu, 01 May 2025 20:01:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-05 17:21:19.823279
- Title: From Texts to Shields: Convergence of Large Language Models and Cybersecurity
- Title(参考訳): テキストからシールドへ:大規模言語モデルとサイバーセキュリティの収束
- Authors: Tao Li, Ya-Ting Yang, Yunian Pan, Quanyan Zhu,
- Abstract要約: 本稿では,大規模言語モデル(LLM)とサイバーセキュリティの収束について検討する。
ソフトウェアおよびネットワークセキュリティ、5G脆弱性分析、生成セキュリティ工学におけるLLMの新たな応用について検討する。
- 参考スコア(独自算出の注目度): 15.480598518857695
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This report explores the convergence of large language models (LLMs) and cybersecurity, synthesizing interdisciplinary insights from network security, artificial intelligence, formal methods, and human-centered design. It examines emerging applications of LLMs in software and network security, 5G vulnerability analysis, and generative security engineering. The report highlights the role of agentic LLMs in automating complex tasks, improving operational efficiency, and enabling reasoning-driven security analytics. Socio-technical challenges associated with the deployment of LLMs -- including trust, transparency, and ethical considerations -- can be addressed through strategies such as human-in-the-loop systems, role-specific training, and proactive robustness testing. The report further outlines critical research challenges in ensuring interpretability, safety, and fairness in LLM-based systems, particularly in high-stakes domains. By integrating technical advances with organizational and societal considerations, this report presents a forward-looking research agenda for the secure and effective adoption of LLMs in cybersecurity.
- Abstract(参考訳): 本報告では,大規模言語モデル(LLM)とサイバーセキュリティの収束について検討し,ネットワークセキュリティ,人工知能,形式的手法,人間中心の設計から学際的洞察を合成する。
ソフトウェアおよびネットワークセキュリティ、5G脆弱性分析、生成セキュリティ工学におけるLLMの新たな応用について検討する。
このレポートでは、複雑なタスクの自動化、運用効率の向上、推論駆動型セキュリティ分析の実現におけるエージェントLDMの役割を強調している。
LLM(信頼、透明性、倫理的配慮を含む)の展開に伴う社会技術的課題は、人間-イン-ザ-ループシステム、役割固有のトレーニング、積極的な堅牢性テストといった戦略を通じて解決することができる。
報告書は、特に高吸収領域において、LLMベースのシステムにおける解釈可能性、安全性、公正性を保証するための重要な研究課題を概説している。
本報告では、技術的進歩と組織的・社会的考察を統合することにより、サイバーセキュリティにおけるLLMの安全かつ効果的な採用に向けた先進的な研究課題を提示する。
関連論文リスト
- An Overview of Large Language Models for Statisticians [109.38601458831545]
大規模言語モデル(LLM)は人工知能(AI)の変換ツールとして登場した。
本稿では, 統計学者がLLMの開発に重要な貢献できる可能性について考察する。
我々は不確実性定量化、解釈可能性、公正性、プライバシー、透かし、モデル適応といった問題に焦点を当てる。
論文 参考訳(メタデータ) (2025-02-25T03:40:36Z) - Large Language Model Safety: A Holistic Survey [35.42419096859496]
大規模言語モデル(LLM)の急速な開発と展開により、人工知能の新たなフロンティアが導入された。
この調査は、LLMの安全性の現在の状況の概要を包括的に紹介し、価値のミスアライメント、敵の攻撃に対する堅牢性、誤用、自律的なAIリスクの4つの主要なカテゴリをカバーしている。
論文 参考訳(メタデータ) (2024-12-23T16:11:27Z) - Global Challenge for Safe and Secure LLMs Track 1 [57.08717321907755]
LLM(Global Challenge for Safe and Secure Large Language Models)は、AI Singapore(AISG)とCyberSG R&D Programme Office(CRPO)が主催する先駆的イニシアチブである。
本稿では,AI Singapore(AISG)とCyberSG R&D Programme Office(CRPO)が組織した先駆的イニシアチブであるLLM(Global Challenge for Safe and Secure Large Language Models)を紹介する。
論文 参考訳(メタデータ) (2024-11-21T08:20:31Z) - Generative AI in Cybersecurity: A Comprehensive Review of LLM Applications and Vulnerabilities [1.0974825157329373]
本稿では,ジェネレーティブAIとLarge Language Models(LLMs)によるサイバーセキュリティの将来を概観する。
ハードウェア設計のセキュリティ、侵入検知、ソフトウェアエンジニアリング、設計検証、サイバー脅威インテリジェンス、マルウェア検出、フィッシング検出など、さまざまな領域にわたるLCMアプリケーションを探索する。
GPT-4, GPT-3.5, Mixtral-8x7B, BERT, Falcon2, LLaMA などのモデルの発展に焦点を当て, LLM の進化とその現状について概説する。
論文 参考訳(メタデータ) (2024-05-21T13:02:27Z) - Large Language Models for Cyber Security: A Systematic Literature Review [14.924782327303765]
サイバーセキュリティ(LLM4Security)における大規模言語モデルの適用に関する文献の総合的なレビューを行う。
LLMは、脆弱性検出、マルウェア分析、ネットワーク侵入検出、フィッシング検出など、幅広いサイバーセキュリティタスクに応用されている。
第3に、細調整、転送学習、ドメイン固有の事前トレーニングなど、特定のサイバーセキュリティドメインにLLMを適用するための有望なテクニックをいくつか特定する。
論文 参考訳(メタデータ) (2024-05-08T02:09:17Z) - Prioritizing Safeguarding Over Autonomy: Risks of LLM Agents for Science [65.77763092833348]
大規模言語モデル(LLM)を利用したインテリジェントエージェントは、自律的な実験を行い、様々な分野にわたる科学的発見を促進する上で、大きな可能性を証明している。
彼らの能力は有望だが、これらのエージェントは安全性を慎重に考慮する必要がある新たな脆弱性も導入している。
本稿では,科学領域におけるLSMをベースとしたエージェントの脆弱性の徹底的な調査を行い,その誤用に伴う潜在的なリスクに光を当て,安全性対策の必要性を強調した。
論文 参考訳(メタデータ) (2024-02-06T18:54:07Z) - Empowering Autonomous Driving with Large Language Models: A Safety Perspective [82.90376711290808]
本稿では,Large Language Models (LLM) の自律運転システムへの統合について検討する。
LLMは行動計画におけるインテリジェントな意思決定者であり、文脈的安全学習のための安全検証シールドを備えている。
適応型LLM条件モデル予測制御(MPC)と状態機械を用いたLLM対応対話型行動計画スキームという,シミュレーション環境における2つの重要な研究について述べる。
論文 参考訳(メタデータ) (2023-11-28T03:13:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。