論文の概要: From Texts to Shields: Convergence of Large Language Models and Cybersecurity
- arxiv url: http://arxiv.org/abs/2505.00841v1
- Date: Thu, 01 May 2025 20:01:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-05 17:21:19.823279
- Title: From Texts to Shields: Convergence of Large Language Models and Cybersecurity
- Title(参考訳): テキストからシールドへ:大規模言語モデルとサイバーセキュリティの収束
- Authors: Tao Li, Ya-Ting Yang, Yunian Pan, Quanyan Zhu,
- Abstract要約: 本稿では,大規模言語モデル(LLM)とサイバーセキュリティの収束について検討する。
ソフトウェアおよびネットワークセキュリティ、5G脆弱性分析、生成セキュリティ工学におけるLLMの新たな応用について検討する。
- 参考スコア(独自算出の注目度): 15.480598518857695
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This report explores the convergence of large language models (LLMs) and cybersecurity, synthesizing interdisciplinary insights from network security, artificial intelligence, formal methods, and human-centered design. It examines emerging applications of LLMs in software and network security, 5G vulnerability analysis, and generative security engineering. The report highlights the role of agentic LLMs in automating complex tasks, improving operational efficiency, and enabling reasoning-driven security analytics. Socio-technical challenges associated with the deployment of LLMs -- including trust, transparency, and ethical considerations -- can be addressed through strategies such as human-in-the-loop systems, role-specific training, and proactive robustness testing. The report further outlines critical research challenges in ensuring interpretability, safety, and fairness in LLM-based systems, particularly in high-stakes domains. By integrating technical advances with organizational and societal considerations, this report presents a forward-looking research agenda for the secure and effective adoption of LLMs in cybersecurity.
- Abstract(参考訳): 本報告では,大規模言語モデル(LLM)とサイバーセキュリティの収束について検討し,ネットワークセキュリティ,人工知能,形式的手法,人間中心の設計から学際的洞察を合成する。
ソフトウェアおよびネットワークセキュリティ、5G脆弱性分析、生成セキュリティ工学におけるLLMの新たな応用について検討する。
このレポートでは、複雑なタスクの自動化、運用効率の向上、推論駆動型セキュリティ分析の実現におけるエージェントLDMの役割を強調している。
LLM(信頼、透明性、倫理的配慮を含む)の展開に伴う社会技術的課題は、人間-イン-ザ-ループシステム、役割固有のトレーニング、積極的な堅牢性テストといった戦略を通じて解決することができる。
報告書は、特に高吸収領域において、LLMベースのシステムにおける解釈可能性、安全性、公正性を保証するための重要な研究課題を概説している。
本報告では、技術的進歩と組織的・社会的考察を統合することにより、サイバーセキュリティにおけるLLMの安全かつ効果的な採用に向けた先進的な研究課題を提示する。
関連論文リスト
- A Survey on Data Security in Large Language Models [12.23432845300652]
LLM(Large Language Models)は、自然言語処理、テキスト生成、機械翻訳、会話システムなどのパワーアプリケーションの基礎である。
トランスフォーメーションの可能性にもかかわらず、これらのモデルは本質的に大量のトレーニングデータに依存しており、しばしば多種多様な未処理ソースから収集され、深刻なデータセキュリティリスクにさらされる。
有害または悪意のあるデータは、モデル動作を妥協し、有害な出力、幻覚、即発注射やデータ中毒などの脅威に対する脆弱性などの問題を引き起こす。
本調査は、LLMが直面する主要なデータセキュリティリスクの概要と、敵を含む現在の防衛戦略のレビューを提供する。
論文 参考訳(メタデータ) (2025-08-04T11:28:34Z) - Information Security Based on LLM Approaches: A Review [3.292159069489852]
大規模言語モデル(LLM)は、情報セキュリティの分野で幅広い応用可能性を示している。
本稿では,ニューラルネットワークとTransformerアーキテクチャに基づいて,大規模言語モデルの技術的基盤を分析する。
大規模言語モデリングの導入は,検出精度の向上とセキュリティシステムの誤警報率の低減に有効である。
論文 参考訳(メタデータ) (2025-07-24T09:09:36Z) - Large Language Models in Cybersecurity: Applications, Vulnerabilities, and Defense Techniques [11.217261201018815]
大規模言語モデル(LLM)は、脅威検出、脆弱性評価、インシデント応答に対するインテリジェントで適応的で自動化されたアプローチを可能にすることで、サイバーセキュリティを変革している。
高度な言語理解とコンテキスト推論によって、LLMは、IoTやブロックチェーン、ハードウェアセキュリティといったドメイン間の課題に対処する従来の手法を超越している。
論文 参考訳(メタデータ) (2025-07-18T03:41:18Z) - On the Surprising Efficacy of LLMs for Penetration-Testing [3.11537581064266]
この論文は、浸透試験におけるLarge Language Models (LLMs)の進化を徹底的にレビューする。
さまざまな攻撃的なセキュリティタスクにまたがって、彼らのアプリケーションをデモし、サイバー殺人チェーンの幅広いフェーズをカバーする。
論文では、より広範な採用と安全なデプロイメントを妨げる重要な障害を特定し、議論する。
論文 参考訳(メタデータ) (2025-07-01T15:01:18Z) - LLM Agents Should Employ Security Principles [60.03651084139836]
本稿では,大規模言語モデル(LLM)エージェントを大規模に展開する際には,情報セキュリティの確立した設計原則を採用するべきであることを論じる。
AgentSandboxは、エージェントのライフサイクル全体を通して保護を提供するために、これらのセキュリティ原則を組み込んだ概念的なフレームワークである。
論文 参考訳(メタデータ) (2025-05-29T21:39:08Z) - Zero-Trust Foundation Models: A New Paradigm for Secure and Collaborative Artificial Intelligence for Internet of Things [61.43014629640404]
Zero-Trust Foundation Models (ZTFM)は、ゼロトラストセキュリティの原則をIoT(Internet of Things)システムの基盤モデル(FM)のライフサイクルに組み込む。
ZTFMは、分散、異質、潜在的に敵対的なIoT環境にわたって、セキュアでプライバシ保護のAIを可能にする。
論文 参考訳(メタデータ) (2025-05-26T06:44:31Z) - A Trustworthy Multi-LLM Network: Challenges,Solutions, and A Use Case [59.58213261128626]
複数の大規模言語モデル(LLM)を信頼性のあるマルチLLMネットワーク(MultiLLMN)に接続するブロックチェーン対応協調フレームワークを提案する。
このアーキテクチャは、複雑なネットワーク最適化問題に対する最も信頼性が高く高品質な応答の協調評価と選択を可能にする。
論文 参考訳(メタデータ) (2025-05-06T05:32:46Z) - Towards Trustworthy GUI Agents: A Survey [64.6445117343499]
本調査では,GUIエージェントの信頼性を5つの重要な次元で検証する。
敵攻撃に対する脆弱性、シーケンシャルな意思決定における障害モードのカスケードなど、大きな課題を特定します。
GUIエージェントが普及するにつれて、堅牢な安全基準と責任ある開発プラクティスを確立することが不可欠である。
論文 参考訳(メタデータ) (2025-03-30T13:26:00Z) - An Overview of Large Language Models for Statisticians [109.38601458831545]
大規模言語モデル(LLM)は人工知能(AI)の変換ツールとして登場した。
本稿では, 統計学者がLLMの開発に重要な貢献できる可能性について考察する。
我々は不確実性定量化、解釈可能性、公正性、プライバシー、透かし、モデル適応といった問題に焦点を当てる。
論文 参考訳(メタデータ) (2025-02-25T03:40:36Z) - Large Language Model Safety: A Holistic Survey [35.42419096859496]
大規模言語モデル(LLM)の急速な開発と展開により、人工知能の新たなフロンティアが導入された。
この調査は、LLMの安全性の現在の状況の概要を包括的に紹介し、価値のミスアライメント、敵の攻撃に対する堅牢性、誤用、自律的なAIリスクの4つの主要なカテゴリをカバーしている。
論文 参考訳(メタデータ) (2024-12-23T16:11:27Z) - Global Challenge for Safe and Secure LLMs Track 1 [57.08717321907755]
LLM(Global Challenge for Safe and Secure Large Language Models)は、AI Singapore(AISG)とCyberSG R&D Programme Office(CRPO)が主催する先駆的イニシアチブである。
本稿では,AI Singapore(AISG)とCyberSG R&D Programme Office(CRPO)が組織した先駆的イニシアチブであるLLM(Global Challenge for Safe and Secure Large Language Models)を紹介する。
論文 参考訳(メタデータ) (2024-11-21T08:20:31Z) - Generative AI in Cybersecurity: A Comprehensive Review of LLM Applications and Vulnerabilities [1.0974825157329373]
本稿では,ジェネレーティブAIとLarge Language Models(LLMs)によるサイバーセキュリティの将来を概観する。
ハードウェア設計のセキュリティ、侵入検知、ソフトウェアエンジニアリング、設計検証、サイバー脅威インテリジェンス、マルウェア検出、フィッシング検出など、さまざまな領域にわたるLCMアプリケーションを探索する。
GPT-4, GPT-3.5, Mixtral-8x7B, BERT, Falcon2, LLaMA などのモデルの発展に焦点を当て, LLM の進化とその現状について概説する。
論文 参考訳(メタデータ) (2024-05-21T13:02:27Z) - Large Language Models for Cyber Security: A Systematic Literature Review [14.924782327303765]
サイバーセキュリティ(LLM4Security)における大規模言語モデルの適用に関する文献の総合的なレビューを行う。
LLMは、脆弱性検出、マルウェア分析、ネットワーク侵入検出、フィッシング検出など、幅広いサイバーセキュリティタスクに応用されている。
第3に、細調整、転送学習、ドメイン固有の事前トレーニングなど、特定のサイバーセキュリティドメインにLLMを適用するための有望なテクニックをいくつか特定する。
論文 参考訳(メタデータ) (2024-05-08T02:09:17Z) - Prioritizing Safeguarding Over Autonomy: Risks of LLM Agents for Science [65.77763092833348]
大規模言語モデル(LLM)を利用したインテリジェントエージェントは、自律的な実験を行い、様々な分野にわたる科学的発見を促進する上で、大きな可能性を証明している。
彼らの能力は有望だが、これらのエージェントは安全性を慎重に考慮する必要がある新たな脆弱性も導入している。
本稿では,科学領域におけるLSMをベースとしたエージェントの脆弱性の徹底的な調査を行い,その誤用に伴う潜在的なリスクに光を当て,安全性対策の必要性を強調した。
論文 参考訳(メタデータ) (2024-02-06T18:54:07Z) - Empowering Autonomous Driving with Large Language Models: A Safety Perspective [82.90376711290808]
本稿では,Large Language Models (LLM) の自律運転システムへの統合について検討する。
LLMは行動計画におけるインテリジェントな意思決定者であり、文脈的安全学習のための安全検証シールドを備えている。
適応型LLM条件モデル予測制御(MPC)と状態機械を用いたLLM対応対話型行動計画スキームという,シミュレーション環境における2つの重要な研究について述べる。
論文 参考訳(メタデータ) (2023-11-28T03:13:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。