論文の概要: LLM-Enhanced Reinforcement Learning for Time Series Anomaly Detection
- arxiv url: http://arxiv.org/abs/2601.02511v1
- Date: Mon, 05 Jan 2026 19:33:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-07 17:02:12.702923
- Title: LLM-Enhanced Reinforcement Learning for Time Series Anomaly Detection
- Title(参考訳): 時系列異常検出のためのLLM強化強化学習
- Authors: Bahareh Golchin, Banafsheh Rekabdar, Danielle Justo,
- Abstract要約: 時系列異常検出は、しばしばスパースラベル、複雑な時間パターン、高価な専門家アノテーションに悩まされる。
本稿では,LL(Reinforcement Learning),VAE(Variational Autoencoder)の強化された動的報酬スケーリング,ラベル伝搬によるアクティブラーニングを併用した,LLM(Large Language Model)に基づく報酬形成機能の統合フレームワークを提案する。
- 参考スコア(独自算出の注目度): 1.1852406625172216
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Detecting anomalies in time series data is crucial for finance, healthcare, sensor networks, and industrial monitoring applications. However, time series anomaly detection often suffers from sparse labels, complex temporal patterns, and costly expert annotation. We propose a unified framework that integrates Large Language Model (LLM)-based potential functions for reward shaping with Reinforcement Learning (RL), Variational Autoencoder (VAE)-enhanced dynamic reward scaling, and active learning with label propagation. An LSTM-based RL agent leverages LLM-derived semantic rewards to guide exploration, while VAE reconstruction errors add unsupervised anomaly signals. Active learning selects the most uncertain samples, and label propagation efficiently expands labeled data. Evaluations on Yahoo-A1 and SMD benchmarks demonstrate that our method achieves state-of-the-art detection accuracy under limited labeling budgets and operates effectively in data-constrained settings. This study highlights the promise of combining LLMs with RL and advanced unsupervised techniques for robust, scalable anomaly detection in real-world applications.
- Abstract(参考訳): 時系列データの異常を検出することは、金融、医療、センサーネットワーク、産業監視アプリケーションにとって不可欠である。
しかし、時系列異常検出は、しばしばスパースラベル、複雑な時間パターン、高価な専門家アノテーションに悩まされる。
本稿では,LL(Reinforcement Learning),VAE(Variational Autoencoder)の強化された動的報酬スケーリング,ラベル伝搬によるアクティブラーニングを併用した,LLM(Large Language Model)に基づく報酬形成機能の統合フレームワークを提案する。
LSTMベースのRLエージェントはLLM由来の意味報酬を利用して探索をガイドし、VAE再構成エラーは教師なしの異常信号を付加する。
アクティブラーニングは最も不確実なサンプルを選択し、ラベルの伝搬はラベル付きデータを効率的に拡張する。
Yahoo-A1 と SMD ベンチマークによる評価から,本手法は限られたラベル付け予算下での最先端検出精度を実現し,データ制約設定で効果的に動作することを示す。
本研究では、LLMとRLを組み合わせることの約束と、実世界のアプリケーションにおける堅牢でスケーラブルな異常検出のための高度な教師なし技術を強調した。
関連論文リスト
- Dynamic Reward Scaling for Multivariate Time Series Anomaly Detection: A VAE-Enhanced Reinforcement Learning Approach [1.332091725929965]
本稿では、変分オートエンコーダ(VAE)、LSTMベースのディープQネットワーク(DQN)、動的報酬形成、これらの問題に一元化学習フレームワークで対処するためのアクティブ学習モジュールを組み合わせた深部強化学習フレームワークを提案する。
論文 参考訳(メタデータ) (2025-11-15T20:36:20Z) - LLM as an Algorithmist: Enhancing Anomaly Detectors via Programmatic Synthesis [40.82779720776548]
大きな言語モデル(LLM)は驚くべき推論能力を示している。
我々のフレームワークは、LLMを「データプロセッサ」から「アルゴリズム」に再配置する。
論文 参考訳(メタデータ) (2025-10-04T19:00:51Z) - DetectAnyLLM: Towards Generalizable and Robust Detection of Machine-Generated Text Across Domains and Models [60.713908578319256]
タスク指向の知識で検出器を最適化するために,DDL(Direct Discrepancy Learning)を提案する。
そこで本研究では,最新のMGTD性能を実現する統合検出フレームワークであるTectAnyLLMを紹介する。
MIRAGEは5つのテキストドメインにまたがる10のコーパスから人書きテキストをサンプリングし、17個の最先端のLLMを使用して再生成または修正する。
論文 参考訳(メタデータ) (2025-09-15T10:59:57Z) - DRTA: Dynamic Reward Scaling for Reinforcement Learning in Time Series Anomaly Detection [7.185726339205792]
時系列データの異常検出は、ファイナンス、ヘルスケア、センサーネットワーク、産業監視におけるアプリケーションにとって重要である。
本稿では,動的報酬形成,変分オートエンコーダ(VAE),DRTAと呼ばれるアクティブラーニングを統合した強化学習ベースのフレームワークを提案する。
提案手法は,VAEに基づく再構成誤りと分類報酬の効果を動的にスケーリングすることにより,探索と利用のバランスをとる適応報酬機構を用いる。
論文 参考訳(メタデータ) (2025-08-25T20:39:49Z) - Detecting LLM Hallucination Through Layer-wise Information Deficiency: Analysis of Ambiguous Prompts and Unanswerable Questions [60.31496362993982]
大規模言語モデル(LLM)は、自信を持って不正確な応答を頻繁に生成する。
本稿では,情報フローの系統的解析を通じて,モデル幻覚を検出する新しいテストタイム手法を提案する。
論文 参考訳(メタデータ) (2024-12-13T16:14:49Z) - Exploring Automatic Cryptographic API Misuse Detection in the Era of LLMs [60.32717556756674]
本稿では,暗号誤用の検出において,大規模言語モデルを評価するための体系的評価フレームワークを提案する。
11,940個のLCM生成レポートを詳細に分析したところ、LSMに固有の不安定性は、報告の半数以上が偽陽性になる可能性があることがわかった。
最適化されたアプローチは、従来の手法を超え、確立されたベンチマークでこれまで知られていなかった誤用を明らかにすることで、90%近い顕著な検出率を達成する。
論文 参考訳(メタデータ) (2024-07-23T15:31:26Z) - Anomaly Detection of Tabular Data Using LLMs [54.470648484612866]
我々は,事前訓練された大規模言語モデル (LLM) がゼロショットバッチレベルの異常検出器であることを示す。
本稿では,実異常検出におけるLCMの潜在性を明らかにするために,エンドツーエンドの微調整手法を提案する。
論文 参考訳(メタデータ) (2024-06-24T04:17:03Z) - Advancing Anomaly Detection: Non-Semantic Financial Data Encoding with LLMs [49.57641083688934]
本稿では,Large Language Models (LLM) 埋め込みを用いた財務データにおける異常検出の新しい手法を提案する。
実験により,LLMが異常検出に有用な情報をもたらし,モデルがベースラインを上回っていることが確認された。
論文 参考訳(メタデータ) (2024-06-05T20:19:09Z) - Large Language Models can Deliver Accurate and Interpretable Time Series Anomaly Detection [34.40206965758026]
時系列異常検出(TSAD)は、標準トレンドから逸脱する非定型パターンを特定することで、様々な産業において重要な役割を果たす。
従来のTSADモデルは、しばしばディープラーニングに依存しており、広範なトレーニングデータを必要とし、ブラックボックスとして動作する。
LLMADは,Large Language Models (LLMs) を用いて,高精度かつ解釈可能なTSAD結果を提供する新しいTSAD手法である。
論文 参考訳(メタデータ) (2024-05-24T09:07:02Z) - Self-Supervised Training with Autoencoders for Visual Anomaly Detection [61.62861063776813]
我々は, 正規サンプルの分布を低次元多様体で支持する異常検出において, 特定のユースケースに焦点を当てた。
我々は、訓練中に識別情報を活用する自己指導型学習体制に適応するが、通常の例のサブ多様体に焦点をあてる。
製造領域における視覚異常検出のための挑戦的なベンチマークであるMVTec ADデータセットで、最先端の新たな結果を達成する。
論文 参考訳(メタデータ) (2022-06-23T14:16:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。