論文の概要: Lesion Segmentation in FDG-PET/CT Using Swin Transformer U-Net 3D: A Robust Deep Learning Framework
- arxiv url: http://arxiv.org/abs/2601.02864v1
- Date: Tue, 06 Jan 2026 09:52:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-07 17:02:12.875562
- Title: Lesion Segmentation in FDG-PET/CT Using Swin Transformer U-Net 3D: A Robust Deep Learning Framework
- Title(参考訳): Swin Transformer U-Net 3Dを用いたFDG-PET/CTの病変分割:ロバスト深層学習フレームワーク
- Authors: Shovini Guha, Dwaipayan Nandi,
- Abstract要約: 本稿ではPET/CTスキャンにおける病変分割のためのスウィントランスフォーマーUNet3D(SwinUNet3D)フレームワークを提案する。
シフトしたウィンドウ自己アテンションとU-Netスタイルのスキップ接続を組み合わせることで、このモデルはグローバルコンテキストと微妙な解剖学的詳細の両方をキャプチャする。
結果は、SwinUNet3DがDiceスコア0.88とIoU0.78を達成し、3D U-Net(Dice 0.48,IoU 0.32)を突破し、推論時間を短縮したことを示している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate and automated lesion segmentation in Positron Emission Tomography / Computed Tomography (PET/CT) imaging is essential for cancer diagnosis and therapy planning. This paper presents a Swin Transformer UNet 3D (SwinUNet3D) framework for lesion segmentation in Fluorodeoxyglucose Positron Emission Tomography / Computed Tomography (FDG-PET/CT) scans. By combining shifted window self-attention with U-Net style skip connections, the model captures both global context and fine anatomical detail. We evaluate SwinUNet3D on the AutoPET III FDG dataset and compare it against a baseline 3D U-Net. Results show that SwinUNet3D achieves a Dice score of 0.88 and IoU of 0.78, surpassing 3D U-Net (Dice 0.48, IoU 0.32) while also delivering faster inference times. Qualitative analysis demonstrates improved detection of small and irregular lesions, reduced false positives, and more accurate PET/CT fusion. While the framework is currently limited to FDG scans and trained under modest GPU resources, it establishes a strong foundation for future multi-tracer, multi-center evaluations and benchmarking against other transformer-based architectures. Overall, SwinUNet3D represents an efficient and robust approach to PET/CT lesion segmentation, advancing the integration of transformer-based models into oncology imaging workflows.
- Abstract(参考訳): Positron emission Tomography / Computed Tomography (PET/CT) の正確な病変分割は癌診断と治療計画に不可欠である。
本稿では,FDG-PET/CTスキャンによるFluorodeoxyglucose Positron emission Tomography/Computed Tomographyにおける病変セグメンテーションのためのスウィントランスフォーマーUNet 3D(SwinUNet3D)フレームワークを提案する。
シフトしたウィンドウ自己アテンションとU-Netスタイルのスキップ接続を組み合わせることで、このモデルはグローバルコンテキストと微妙な解剖学的詳細の両方をキャプチャする。
我々は,AutoPET III FDGデータセット上でSwinUNet3Dを評価し,ベースラインの3D U-Netと比較した。
結果は、SwinUNet3DがDiceスコア0.88とIoU0.78を達成し、3D U-Net(Dice 0.48,IoU 0.32)を突破し、推論時間を短縮したことを示している。
定性的分析では、小・不規則な病変の検出の改善、偽陽性の減少、PET/CT融合の精度の向上が示されている。
現在、このフレームワークはFDGスキャンに限られており、控えめなGPUリソースの下で訓練されているが、将来のマルチトラック、マルチセンター評価、他のトランスフォーマーベースのアーキテクチャに対するベンチマークのための強力な基盤を確立している。
全体として、SwinUNet3DはPET/CT病変のセグメンテーションに対する効率的で堅牢なアプローチであり、トランスフォーマーベースのモデルのオンコロジーイメージングワークフローへの統合を推進している。
関連論文リスト
- Personalized MR-Informed Diffusion Models for 3D PET Image Reconstruction [40.722159771726375]
本稿では,PET-MR スキャンのデータセットから対象特異的なPET画像を生成するための簡易な手法を提案する。
私たちが合成した画像は、被験者のMRスキャンからの情報を保持し、高分解能と解剖学的特徴の保持につながる。
18ドルF]FDGデータセットのシミュレーションと実データを用いて,対象特異的な「擬似PET」画像を用いたパーソナライズされた拡散モデルの事前学習により,低カウントデータによる再構成精度が向上することを示す。
論文 参考訳(メタデータ) (2025-06-04T10:24:14Z) - 3D-CT-GPT: Generating 3D Radiology Reports through Integration of Large Vision-Language Models [51.855377054763345]
本稿では,VQAに基づく医用視覚言語モデルである3D-CT-GPTについて紹介する。
パブリックデータセットとプライベートデータセットの両方の実験により、3D-CT-GPTはレポートの正確さと品質という点で既存の手法を著しく上回っていることが示された。
論文 参考訳(メタデータ) (2024-09-28T12:31:07Z) - From FDG to PSMA: A Hitchhiker's Guide to Multitracer, Multicenter Lesion Segmentation in PET/CT Imaging [0.9384264274298444]
本稿では,ResEncL アーキテクチャを用いた nnU-Net フレームワークを用いたマルチトラス,マルチセンタの一般化を目的とした AutoPET III チャレンジの解決策を提案する。
主なテクニックは、CT、MR、PETデータセット間での誤調整データ拡張とマルチモーダル事前トレーニングである。
Diceスコアが57.61となったデフォルトのnnU-Netと比較して、Diceスコアが68.40であり、偽陽性(FPvol: 7.82)と偽陰性(FNvol: 10.35)が減少している。
論文 参考訳(メタデータ) (2024-09-14T16:39:17Z) - 2.5D Multi-view Averaging Diffusion Model for 3D Medical Image Translation: Application to Low-count PET Reconstruction with CT-less Attenuation Correction [17.897681480967087]
ポジトロン・エミッション・トモグラフィ(PET)は重要な臨床画像診断ツールであるが、患者や医療機関に必然的に放射線障害をもたらす。
非減衰補正低線量PETを減衰補正標準線量PETに変換する3D法の開発が望ましい。
近年の拡散モデルは、従来のCNNベースの手法よりも優れた画像から画像への翻訳のための最先端のディープラーニング手法として登場した。
NACを用いた3次元画像から画像への変換のための新しい2.5次元マルチビュー平均拡散モデル(MADM)を開発した。
論文 参考訳(メタデータ) (2024-06-12T16:22:41Z) - View-Disentangled Transformer for Brain Lesion Detection [50.4918615815066]
より正確な腫瘍検出のためのMRI特徴抽出のための新しいビューディペンタングル変換器を提案する。
まず, 3次元脳スキャンにおいて, 異なる位置の長距離相関を求める。
第二に、トランスフォーマーはスライス機能のスタックを複数の2Dビューとしてモデル化し、これらの機能をビュー・バイ・ビューとして拡張する。
第三に、提案したトランスモジュールをトランスのバックボーンに展開し、脳病変を取り巻く2D領域を効果的に検出する。
論文 参考訳(メタデータ) (2022-09-20T11:58:23Z) - Hepatic vessel segmentation based on 3Dswin-transformer with inductive
biased multi-head self-attention [46.46365941681487]
Indu BIased Multi-Head Attention Vessel Net という,堅牢なエンドツーエンドのコンテナセグメンテーションネットワークを提案する。
正確な肝血管のボクセルを見つけるために,パッチワイド埋め込みよりもボクセルワイド埋め込みを導入する。
一方,絶対位置埋め込みから帰納的バイアス付き相対的位置埋め込みを学習する帰納的バイアス付きマルチヘッド自己アテンションを提案する。
論文 参考訳(メタデータ) (2021-11-05T10:17:08Z) - Automated Model Design and Benchmarking of 3D Deep Learning Models for
COVID-19 Detection with Chest CT Scans [72.04652116817238]
3D胸部CTスキャン分類のための3D DLモデルを自動的に検索するための差別化可能なニューラルネットワーク探索(DNAS)フレームワークを提案する。
また,我々のモデルのクラスアクティベーションマッピング(cam)技術を利用して,結果の解釈可能性を提供する。
論文 参考訳(メタデータ) (2021-01-14T03:45:01Z) - Revisiting 3D Context Modeling with Supervised Pre-training for
Universal Lesion Detection in CT Slices [48.85784310158493]
CTスライスにおける普遍的病変検出のための3Dコンテキスト強化2D特徴を効率的に抽出するための修飾擬似3次元特徴ピラミッドネットワーク(MP3D FPN)を提案する。
新たな事前学習手法により,提案したMP3D FPNは,DeepLesionデータセット上での最先端検出性能を実現する。
提案された3Dプリトレーニングウェイトは、他の3D医療画像分析タスクのパフォーマンスを高めるために使用できる。
論文 参考訳(メタデータ) (2020-12-16T07:11:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。