論文の概要: Temporal Graph Network: Hallucination Detection in Multi-Turn Conversation
- arxiv url: http://arxiv.org/abs/2601.03051v1
- Date: Tue, 06 Jan 2026 14:34:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-07 17:02:12.975334
- Title: Temporal Graph Network: Hallucination Detection in Multi-Turn Conversation
- Title(参考訳): 時間グラフネットワーク:多言語会話における幻覚検出
- Authors: Vidhi Rathore, Sambu Aneesh, Himanshu Singh,
- Abstract要約: 幻覚は会話型AIシステムによって生成される。
本稿では,対話レベルの幻覚を検出するためのグラフベースの新しい手法を提案する。
我々のフレームワークは、各対話をノードとしてモデル化し、文変換器を用いてそれを符号化する。
- 参考スコア(独自算出の注目度): 0.9064542163606172
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hallucinations can be produced by conversational AI systems, particularly in multi-turn conversations where context changes and contradictions may eventually surface. By representing the entire conversation as a temporal graph, we present a novel graph-based method for detecting dialogue-level hallucinations. Our framework models each dialogue as a node, encoding it using a sentence transformer. We explore two different ways of connectivity: i) shared-entity edges, which connect turns that refer to the same entities; ii) temporal edges, which connect contiguous turns in the conversation. Message-passing is used to update the node embeddings, allowing flow of information between related nodes. The context-aware node embeddings are then combined using attention pooling into a single vector, which is then passed on to a classifier to determine the presence and type of hallucinations. We demonstrate that our method offers slightly improved performance over existing methods. Further, we show the attention mechanism can be used to justify the decision making process. The code and model weights are made available at: https://github.com/sambuaneesh/anlp-project.
- Abstract(参考訳): 幻覚は会話型AIシステム、特にコンテキストの変化や矛盾が最終的に表面化するマルチターン会話によって生成される。
会話全体を時間グラフとして表現することにより,対話レベルの幻覚を検出する新しいグラフベースの手法を提案する。
我々のフレームワークは、各対話をノードとしてモデル化し、文変換器を用いてそれを符号化する。
私たちは2つの異なる接続方法を模索しています。
一 同一の実体をいう交替を接続する共有親和性エッジ
二 会話において連続的な旋回を接続する側頭縁
メッセージパッシングはノードの埋め込みを更新するために使用され、関連するノード間の情報のフローを可能にする。
コンテキスト対応ノードの埋め込みは、アテンションプーリングを使用して単一のベクトルに結合され、次に分類器に渡されて、幻覚の存在と種類を決定する。
提案手法は既存手法よりも若干性能が向上していることを示す。
さらに、意思決定プロセスの正当化に注意機構を利用できることを示す。
コードとモデルの重み付けは、https://github.com/sambuaneesh/anlp-project.comで公開されている。
関連論文リスト
- Knowledge-Aware Conversation Derailment Forecasting Using Graph Convolutional Networks [5.571668670990489]
我々は,対話文脈情報の知識ベースからコモンセンス文を導出し,グラフニューラルネットワークの分類アーキテクチャを充実させる。
我々は,発話のマルチソース情報をカプセルに融合し,会話の脱線を予測するためにトランスフォーマーベースの予測器が使用する。
我々のモデルは,CGAおよびCMVベンチマークデータセットの最先端モデルよりも優れ,会話のダイナミクスと文脈の伝播を捉えている。
論文 参考訳(メタデータ) (2024-08-24T02:40:28Z) - Conversational Semantic Parsing using Dynamic Context Graphs [68.72121830563906]
汎用知識グラフ(KG)を用いた会話意味解析の課題を,数百万のエンティティと数千のリレーショナルタイプで検討する。
ユーザ発話を実行可能な論理形式にインタラクティブにマッピングできるモデルに焦点を当てる。
論文 参考訳(メタデータ) (2023-05-04T16:04:41Z) - Learning to Listen: Modeling Non-Deterministic Dyadic Facial Motion [89.01668641930206]
本稿では,対話における対話コミュニケーションをモデル化するための枠組みを提案する。
我々は、対応するリスナー動作の複数の可能性を自動回帰的に出力する。
本手法は,非言語的ダイアド相互作用の多モーダルおよび非決定論的性質を有機的に捕捉する。
論文 参考訳(メタデータ) (2022-04-18T17:58:04Z) - Learning Spatial-Temporal Graphs for Active Speaker Detection [26.45877018368872]
SPELLは、長距離マルチモーダルグラフを学習し、オーディオと視覚データ間のモーダル関係を符号化するフレームワークである。
まず、各ノードが1人に対応するように、ビデオからグラフを構築する。
グラフに基づく表現の学習は,その空間的・時間的構造から,全体の性能を著しく向上させることを示した。
論文 参考訳(メタデータ) (2021-12-02T18:29:07Z) - Learning Reasoning Paths over Semantic Graphs for Video-grounded
Dialogues [73.04906599884868]
対話文脈(PDC)における推論経路の新しい枠組みを提案する。
PDCモデルは、各質問と回答の語彙成分に基づいて構築されたセマンティックグラフを通じて、対話間の情報フローを発見する。
本モデルでは,この推論経路を通じて視覚情報とテキスト情報を逐次的に処理し,提案する特徴を用いて回答を生成する。
論文 参考訳(メタデータ) (2021-03-01T07:39:26Z) - Online Conversation Disentanglement with Pointer Networks [13.063606578730449]
本稿では,会話の絡み合わせのためのエンドツーエンドのオンラインフレームワークを提案する。
我々は、タイムスタンプ、話者、メッセージテキストを含む全発話を埋め込む新しい手法を設計する。
Ubuntu IRCデータセットを用いた実験により,提案手法はリンクと会話の予測タスクにおいて,最先端のパフォーマンスを実現することを示す。
論文 参考訳(メタデータ) (2020-10-21T15:43:07Z) - A Graph-based Interactive Reasoning for Human-Object Interaction
Detection [71.50535113279551]
本稿では,HOIを推論するインタラクティブグラフ(Interactive Graph, in-Graph)という,グラフに基づくインタラクティブ推論モデルを提案する。
In-GraphNet と呼ばれる HOI を検出するための新しいフレームワークを構築した。
私たちのフレームワークはエンドツーエンドのトレーニングが可能で、人間のポーズのような高価なアノテーションはありません。
論文 参考訳(メタデータ) (2020-07-14T09:29:03Z) - Iterative Context-Aware Graph Inference for Visual Dialog [126.016187323249]
本稿では,新しいコンテキスト認識グラフ(CAG)ニューラルネットワークを提案する。
グラフの各ノードは、オブジェクトベース(視覚)と履歴関連(テキスト)コンテキスト表現の両方を含む、共同意味機能に対応している。
論文 参考訳(メタデータ) (2020-04-05T13:09:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。