論文の概要: Online Conversation Disentanglement with Pointer Networks
- arxiv url: http://arxiv.org/abs/2010.11080v1
- Date: Wed, 21 Oct 2020 15:43:07 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-04 23:59:28.157437
- Title: Online Conversation Disentanglement with Pointer Networks
- Title(参考訳): ポインタネットワークによるオンライン会話の絡み合い
- Authors: Tao Yu, Shafiq Joty
- Abstract要約: 本稿では,会話の絡み合わせのためのエンドツーエンドのオンラインフレームワークを提案する。
我々は、タイムスタンプ、話者、メッセージテキストを含む全発話を埋め込む新しい手法を設計する。
Ubuntu IRCデータセットを用いた実験により,提案手法はリンクと会話の予測タスクにおいて,最先端のパフォーマンスを実現することを示す。
- 参考スコア(独自算出の注目度): 13.063606578730449
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Huge amounts of textual conversations occur online every day, where multiple
conversations take place concurrently. Interleaved conversations lead to
difficulties in not only following the ongoing discussions but also extracting
relevant information from simultaneous messages. Conversation disentanglement
aims to separate intermingled messages into detached conversations. However,
existing disentanglement methods rely mostly on handcrafted features that are
dataset specific, which hinders generalization and adaptability. In this work,
we propose an end-to-end online framework for conversation disentanglement that
avoids time-consuming domain-specific feature engineering. We design a novel
way to embed the whole utterance that comprises timestamp, speaker, and message
text, and proposes a custom attention mechanism that models disentanglement as
a pointing problem while effectively capturing inter-utterance interactions in
an end-to-end fashion. We also introduce a joint-learning objective to better
capture contextual information. Our experiments on the Ubuntu IRC dataset show
that our method achieves state-of-the-art performance in both link and
conversation prediction tasks.
- Abstract(参考訳): 大量のテキスト会話が毎日オンラインで行われ、複数の会話が同時に行われる。
インターリーブされた会話は、進行中の議論だけでなく、同時メッセージから関連する情報を抽出するのにも困難をもたらす。
会話の絡み合いは、会話を分離することを目的としている。
しかし、既存のジエンタングルメントメソッドは、主にデータセット固有の手作りの機能に依存しているため、一般化と適応性を妨げる。
本稿では,時間を要するドメイン固有の機能工学を回避し,会話の絡み合いに対するエンドツーエンドのオンラインフレームワークを提案する。
我々は,タイムスタンプ,話者,メッセージテキストを含む発話全体を埋め込む新しい手法を設計し,発話間相互作用をエンドツーエンドで効果的に捉えつつ,解離をポインティング問題としてモデル化するカスタムアテンション機構を提案する。
また,文脈情報を取り込むための共同学習目標についても紹介する。
Ubuntu IRCデータセットを用いた実験により,提案手法はリンクと会話の予測タスクにおいて,最先端のパフォーマンスを実現する。
関連論文リスト
- CantTalkAboutThis: Aligning Language Models to Stay on Topic in Dialogues [4.427811636536821]
CantTalkAboutこのデータセットは、異なるドメインからの幅広い会話トピックに関する合成対話で構成されている。
このデータセット上の微調整言語モデルは、割り当てられたロールから逸脱する耐性を高めるのに役立ちます。
予備的な観察は、このデータセットのトレーニングモデルが、安全アライメントを含む、きめ細かい指示に従うタスクのパフォーマンスを向上させることを示唆している。
論文 参考訳(メタデータ) (2024-04-04T22:31:58Z) - Conversation Chronicles: Towards Diverse Temporal and Relational
Dynamics in Multi-Session Conversations [9.249662593315541]
我々は,長期会話設定を実装するために,新たに100万件の多セッション対話データセットであるConversation Chroniclesを導入する。
会話年代記の対話エピソードは、一貫性と一貫した相互作用を維持しながら、それらの特性を反映していることを示す。
また、時系列要約と対話生成モジュールで構成されるReBotと呼ばれる対話モデルを提案する。
論文 参考訳(メタデータ) (2023-10-20T11:06:21Z) - End-to-end Spoken Conversational Question Answering: Task, Dataset and
Model [92.18621726802726]
音声による質問応答では、システムは関連する音声書き起こしの中に連続したテキストスパンからの質問に答えるように設計されている。
本稿では,複雑な対話フローをモデル化することを目的とした音声対話型質問応答タスク(SCQA)を提案する。
本研究の目的は,音声記録に基づく対話型質問に対処するシステムを構築することであり,情報収集システムによる様々なモダリティからより多くの手がかりを提供する可能性を探ることである。
論文 参考訳(メタデータ) (2022-04-29T17:56:59Z) - Topic-Aware Contrastive Learning for Abstractive Dialogue Summarization [41.75442239197745]
本研究は,コヒーレンス検出とサブ・サブ・サブ・サブ・サブ・サブ・サブ・サブ・サブ・サミマリ・ジェネレーションという2つのトピック・アウェア・コントラスト学習目標を提案する。
ベンチマークデータセットの実験では、提案手法が強いベースラインを著しく上回ることを示した。
論文 参考訳(メタデータ) (2021-09-10T17:03:25Z) - Unsupervised Conversation Disentanglement through Co-Training [30.304609312675186]
人間のアノテーションを参考にすることなく、会話の絡み合いモデルを訓練する。
提案手法は,2つのニューラルネットワークからなるディープコトレーニングアルゴリズムに基づいて構築される。
メッセージペア分類器では、信頼度の高いメッセージペアを検索することで、トレーニングデータを強化します。
論文 参考訳(メタデータ) (2021-09-07T17:05:18Z) - Disentangling Online Chats with DAG-Structured LSTMs [55.33014148383343]
DAG-LSTMはTree-LSTMの一般化であり、間接的な非循環的依存関係を処理できる。
提案する新モデルでは,リプライ・トゥ・リレーション(Repend-to-Relation)を回復する作業において,アート・ステータスの状態を達成できることが示される。
論文 参考訳(メタデータ) (2021-06-16T18:00:00Z) - Dialogue History Matters! Personalized Response Selectionin Multi-turn
Retrieval-based Chatbots [62.295373408415365]
本稿では,コンテキスト応答マッチングのためのパーソナライズドハイブリッドマッチングネットワーク(phmn)を提案する。
1) ユーザ固有の対話履歴からパーソナライズされた発話行動を付加的なマッチング情報として抽出する。
ユーザ識別による2つの大規模データセット,すなわちパーソナライズされた対話 Corpus Ubuntu (P-Ubuntu) とパーソナライズされたWeiboデータセット (P-Weibo) のモデルを評価する。
論文 参考訳(メタデータ) (2021-03-17T09:42:11Z) - Response Selection for Multi-Party Conversations with Dynamic Topic
Tracking [63.15158355071206]
我々は、応答と関連する会話コンテキストの間のトピックを一致させるために、動的トピック追跡タスクとして応答選択をフレーム化する。
本研究では,大規模な事前学習モデルによる効率的な符号化を支援する新しいマルチタスク学習フレームワークを提案する。
DSTC-8 Ubuntu IRCデータセットの実験結果は、応答選択とトピックのアンタングル化タスクにおける最先端の結果を示している。
論文 参考訳(メタデータ) (2020-10-15T14:21:38Z) - Multi-View Sequence-to-Sequence Models with Conversational Structure for
Abstractive Dialogue Summarization [72.54873655114844]
テキスト要約は、NLPにおいて最も困難で興味深い問題の1つである。
本研究では、まず、異なる視点から構造化されていない日々のチャットの会話構造を抽出し、会話を表現するマルチビューシーケンス・ツー・シーケンスモデルを提案する。
大規模対話要約コーパスの実験により,本手法は,自動評価と人的判断の両面から,従来の最先端モデルよりも有意に優れた性能を示した。
論文 参考訳(メタデータ) (2020-10-04T20:12:44Z) - Topic-Aware Multi-turn Dialogue Modeling [91.52820664879432]
本稿では,トピック認識発話を教師なしでセグメント化して抽出する,多元対話モデリングのための新しいソリューションを提案する。
トピック・アウェア・モデリングは、新たに提案されたトピック・アウェア・セグメンテーション・アルゴリズムとトピック・アウェア・デュアル・アテンション・マッチング(TADAM)ネットワークによって実現されている。
論文 参考訳(メタデータ) (2020-09-26T08:43:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。