論文の概要: DiT-JSCC: Rethinking Deep JSCC with Diffusion Transformers and Semantic Representations
- arxiv url: http://arxiv.org/abs/2601.03112v1
- Date: Tue, 06 Jan 2026 15:42:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-07 17:02:12.995816
- Title: DiT-JSCC: Rethinking Deep JSCC with Diffusion Transformers and Semantic Representations
- Title(参考訳): DiT-JSCC: 拡散変換器と意味表現による深部JSCCの再考
- Authors: Kailin Tan, Jincheng Dai, Sixian Wang, Guo Lu, Shuo Shao, Kai Niu, Wenjun Zhang, Ping Zhang,
- Abstract要約: 新たなDeep J SCCパラダイムとして、ジェネレーティブジョイントソースチャネルコーディング(GJSCC)が登場した。
本稿では,意味論的優先表現エンコーダと拡散変換器(DiT)に基づく生成復号器を共同で学習できる,新しいGJSCCバックボーンであるDiT-JSCCを提案する。
DiT-JSCCは, 意味的一貫性と視覚的品質の両面で, 特に極端な状況下で, 既存のJ SCC法より一貫して優れていることを示す。
- 参考スコア(独自算出の注目度): 32.904008725578606
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generative joint source-channel coding (GJSCC) has emerged as a new Deep JSCC paradigm for achieving high-fidelity and robust image transmission under extreme wireless channel conditions, such as ultra-low bandwidth and low signal-to-noise ratio. Recent studies commonly adopt diffusion models as generative decoders, but they frequently produce visually realistic results with limited semantic consistency. This limitation stems from a fundamental mismatch between reconstruction-oriented JSCC encoders and generative decoders, as the former lack explicit semantic discriminability and fail to provide reliable conditional cues. In this paper, we propose DiT-JSCC, a novel GJSCC backbone that can jointly learn a semantics-prioritized representation encoder and a diffusion transformer (DiT) based generative decoder, our open-source project aims to promote the future research in GJSCC. Specifically, we design a semantics-detail dual-branch encoder that aligns naturally with a coarse-to-fine conditional DiT decoder, prioritizing semantic consistency under extreme channel conditions. Moreover, a training-free adaptive bandwidth allocation strategy inspired by Kolmogorov complexity is introduced to further improve the transmission efficiency, thereby indeed redefining the notion of information value in the era of generative decoding. Extensive experiments demonstrate that DiT-JSCC consistently outperforms existing JSCC methods in both semantic consistency and visual quality, particularly in extreme regimes.
- Abstract(参考訳): GJSCCは、超低帯域幅や低信号対雑音比などの極端無線チャネル条件下で高忠実かつ堅牢な画像伝送を実現するための新しいディープJSCCパラダイムとして登場した。
近年の研究では、拡散モデルを生成デコーダとして採用している。
この制限は、再構成指向のJSCCエンコーダと生成デコーダの基本的なミスマッチに由来する。
本稿では,表現エンコーダと拡散変換器(DiT)をベースとした生成デコーダを共同で学習する新しいGJSCCバックボーンであるDiT-JSCCを提案する。
具体的には、極端チャネル条件下でのセマンティック一貫性を優先し、粗大な条件付きDiTデコーダと自然に整合するセマンティックス・ディテールデュアルブランチ・エンコーダを設計する。
さらに、Kolmogorov複雑性にインスパイアされたトレーニング不要適応帯域割り当て戦略を導入し、伝送効率をさらに向上させ、生成復号化時代の情報値の概念を再定義する。
DiT-JSCCは、特に極端な状況において、意味的一貫性と視覚的品質の両方において、既存のJSCCメソッドを一貫して上回ることを示した。
関連論文リスト
- SecDiff: Diffusion-Aided Secure Deep Joint Source-Channel Coding Against Adversarial Attacks [73.41290017870097]
SecDiffは、プラグイン・アンド・プレイの拡散支援デコーディングフレームワークである。
対向無線環境下での深部JSCCの安全性と堅牢性を大幅に向上させる。
論文 参考訳(メタデータ) (2025-11-03T11:24:06Z) - Semantic Channel Equalization Strategies for Deep Joint Source-Channel Coding [8.967618587731694]
ディープジョイント・ソース・チャネル・コーディング(DeepJSCC)は、エンドツーエンドのセマンティック・コミュニケーションの強力なパラダイムとして登場した。
既存のDeepJSCCスキームは送信機(TX)と受信機(RX)で共有潜在空間を仮定する。
このミスマッチは、"セマンティックノイズ"を導入し、再構築品質を劣化させ、下流タスクのパフォーマンスを低下させる。
論文 参考訳(メタデータ) (2025-10-06T10:29:07Z) - Large-Scale Model Enabled Semantic Communication Based on Robust Knowledge Distillation [45.347078403677216]
大規模モデル(LSM)は意味表現と理解に有効なフレームワークである。
しかしながら、それらの直接的なデプロイメントは、しばしば高い計算複雑性とリソース要求によって妨げられる。
本稿では,新しい知識蒸留に基づくセマンティックコミュニケーションフレームワークを提案する。
論文 参考訳(メタデータ) (2025-08-04T07:47:18Z) - SING: Semantic Image Communications using Null-Space and INN-Guided Diffusion Models [52.40011613324083]
近年, 無線画像伝送において, 共用音源チャネル符号化システム (DeepJSCC) が顕著な性能を発揮している。
既存の手法では、送信された画像とレシーバーの再構成されたバージョンとの間の歪みを最小限に抑えることに重点を置いており、しばしば知覚的品質を見落としている。
逆問題として,破損した再構成画像から高品質な画像の復元を定式化する新しいフレームワークであるSINGを提案する。
論文 参考訳(メタデータ) (2025-03-16T12:32:11Z) - Joint Source-Channel Coding: Fundamentals and Recent Progress in
Practical Designs [6.059175509501795]
ジョイントソースチャネル符号化(JSCC)は、圧縮とチャネルコーディングを最適化することで、エンド・ツー・エンドのアプローチを提供する。
本稿では, J SCC の情報理論の基礎について概説し, 数十年にわたる実践的 J SCC 設計の実態調査を行い, 実用システムへの導入が限定された理由について論じる。
論文 参考訳(メタデータ) (2024-09-26T06:10:29Z) - Learned Image Transmission with Hierarchical Variational Autoencoder [28.084648666081943]
画像伝送のための革新的階層型ジョイントソースチャネル符号化(HJSCC)フレームワークを提案する。
提案手法では,送信側のボトムアップパスとトップダウンパスの組み合わせを利用して,元の画像の複数の階層表現を自動回帰的に生成する。
提案手法は, 周波数歪み特性において既存のベースラインより優れ, チャネルノイズに対するロバスト性を維持している。
論文 参考訳(メタデータ) (2024-08-29T08:23:57Z) - Diffusion-Driven Semantic Communication for Generative Models with Bandwidth Constraints [66.63250537475973]
本稿では,帯域制限付き生成モデルのための,高度なVAEベースの圧縮を用いた拡散駆動型セマンティック通信フレームワークを提案する。
実験の結果,ピーク信号対雑音比 (PSNR) などの画素レベルの指標と,LPIPS (Learning Perceptual Image patch similarity) のような意味的指標が大幅に改善された。
論文 参考訳(メタデータ) (2024-07-26T02:34:25Z) - Agent-driven Generative Semantic Communication with Cross-Modality and Prediction [57.335922373309074]
本稿では,強化学習に基づくエージェント駆動型ジェネリックセマンティックコミュニケーションフレームワークを提案する。
本研究では, エージェント支援型セマンティックエンコーダを開発し, 適応的セマンティック抽出とサンプリングを行う。
設計モデルの有効性をUA-DETRACデータセットを用いて検証し、全体的なA-GSCフレームワークの性能向上を実証した。
論文 参考訳(メタデータ) (2024-04-10T13:24:27Z) - Complexity Matters: Rethinking the Latent Space for Generative Modeling [65.64763873078114]
生成的モデリングにおいて、多くの成功したアプローチは、例えば安定拡散のような低次元の潜在空間を利用する。
本研究では, モデル複雑性の観点から潜在空間を再考することにより, 未探索の話題に光を当てることを目的としている。
論文 参考訳(メタデータ) (2023-07-17T07:12:29Z) - Generative Joint Source-Channel Coding for Semantic Image Transmission [29.738666406095074]
ディープニューラルネットワーク(DNN)を用いたJSCCスキームは、無線画像伝送において有望な結果をもたらす。
本稿では,無線画像伝送における深部生成モデル(DGM)の知覚品質を活用する2つの新しいJ SCC方式を提案する。
論文 参考訳(メタデータ) (2022-11-24T19:14:27Z) - Perceptual Learned Source-Channel Coding for High-Fidelity Image
Semantic Transmission [7.692038874196345]
本稿では, 深部JSCCの最適化のために, 対向損失を導入する。
我々の新しい深層JSCCアーキテクチャは、エンコーダ、無線チャネル、デコーダ/ジェネレータ、および識別器を組み合わせたものである。
ユーザスタディでは、知覚的に類似したエンドツーエンドの画像伝送品質を達成することで、約50%の無線チャネル帯域幅コストを節約できることを確認した。
論文 参考訳(メタデータ) (2022-05-26T03:05:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。