論文の概要: Self-Supervised Learning from Noisy and Incomplete Data
- arxiv url: http://arxiv.org/abs/2601.03244v1
- Date: Tue, 06 Jan 2026 18:40:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-07 17:02:13.063556
- Title: Self-Supervised Learning from Noisy and Incomplete Data
- Title(参考訳): ノイズと不完全データからの自己教師付き学習
- Authors: Julián Tachella, Mike Davies,
- Abstract要約: 科学と工学の問題は、ノイズや不完全な観測から信号を推測することである。
最近のデータ駆動手法は、地上の信号や関連する観測例から直接解法を学習することで、より良い解を提供することが多い。
自己教師付き学習手法は、測定データのみからソルバを学習することで、有望な代替手段を提供する。
- 参考スコア(独自算出の注目度): 11.852526434070839
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many important problems in science and engineering involve inferring a signal from noisy and/or incomplete observations, where the observation process is known. Historically, this problem has been tackled using hand-crafted regularization (e.g., sparsity, total-variation) to obtain meaningful estimates. Recent data-driven methods often offer better solutions by directly learning a solver from examples of ground-truth signals and associated observations. However, in many real-world applications, obtaining ground-truth references for training is expensive or impossible. Self-supervised learning methods offer a promising alternative by learning a solver from measurement data alone, bypassing the need for ground-truth references. This manuscript provides a comprehensive summary of different self-supervised methods for inverse problems, with a special emphasis on their theoretical underpinnings, and presents practical applications in imaging inverse problems.
- Abstract(参考訳): 科学と工学における多くの重要な問題は、観測過程が知られているノイズや不完全な観測から信号を推測することである。
歴史的に、この問題は有意義な見積もりを得るために手作りの正則化(例えば、疎性、全変量)を用いて取り組まれてきた。
近年のデータ駆動型手法は、地上構造信号や関連する観測例から直接解法を学習することで、より良い解を提供することが多い。
しかし、多くの実世界の応用において、トレーニングのための基礎的真実の参照を得ることは高価か不可能である。
自己教師付き学習手法は,測定データのみからソルバを学習し,地道参照の必要性を回避して,有望な代替手段を提供する。
本写本は, 逆問題に対する様々な自己指導手法の包括的概要を提供し, 理論的基盤に特に重点を置いて, 逆問題の画像化における実践的応用を提示する。
関連論文リスト
- What Really Matters for Learning-based LiDAR-Camera Calibration [50.2608502974106]
本稿では,学習に基づくLiDAR-Cameraキャリブレーションの開発を再考する。
我々は、広く使われているデータ生成パイプラインによる回帰ベースの手法の限界を識別する。
また,入力データ形式と前処理操作がネットワーク性能に与える影響についても検討する。
論文 参考訳(メタデータ) (2025-01-28T14:12:32Z) - RECOVAR: Representation Covariances on Deep Latent Spaces for Seismic Event Detection [0.0]
生波形から地震を検出することを学習する地震検出の教師なし手法を開発した。
パフォーマンスは、いくつかの最先端の教師付きメソッドと同等であり、場合によっては同等である。
このアプローチは、他のドメインからの時系列データセットに有用である可能性がある。
論文 参考訳(メタデータ) (2024-07-25T21:33:54Z) - Towards Effective Evaluations and Comparisons for LLM Unlearning Methods [97.2995389188179]
本稿では,大規模言語モデルにおける機械学習評価の精度向上を図る。
評価指標の堅牢性と、競合する目標間のトレードオフという、2つの重要な課題に対処します。
論文 参考訳(メタデータ) (2024-06-13T14:41:00Z) - Learned reconstruction methods for inverse problems: sample error
estimates [0.8702432681310401]
本論文は,学習した再構成手法の一般化特性,特にサンプル誤差解析を行うためのものである。
より一般的な戦略が提案され、その仮定は、逆問題と学習方法の大きなクラスに対して満たされる。
論文 参考訳(メタデータ) (2023-12-21T17:56:19Z) - Scale-Equivariant Imaging: Self-Supervised Learning for Image Super-Resolution and Deblurring [9.587978273085296]
自己監督法は, 様々な画像逆問題において, 教師付き法と同程度に有効であることが最近証明された。
本稿では,多くの画像分布がほぼ不変であるという事実を活かした,新たな自己教師型手法であるスケール不変イメージングを提案する。
提案手法が他の自己教師型手法より優れていることを示す実データセットに関する一連の実験を行った。
論文 参考訳(メタデータ) (2023-12-18T14:30:54Z) - Re-Evaluating LiDAR Scene Flow for Autonomous Driving [80.37947791534985]
自己教師型LiDARシーンフローの一般的なベンチマークは、動的動き、非現実的な対応、非現実的なサンプリングパターンの非現実的な速度を持つ。
実世界のデータセットのスイート上で,トップメソッドのスイートを評価する。
学習に重点を置いているにもかかわらず、ほとんどのパフォーマンス向上は前処理と後処理のステップによって引き起こされる。
論文 参考訳(メタデータ) (2023-04-04T22:45:50Z) - IQ-Learn: Inverse soft-Q Learning for Imitation [95.06031307730245]
少数の専門家データからの模倣学習は、複雑な力学を持つ高次元環境では困難である。
行動クローニングは、実装の単純さと安定した収束性のために広く使われている単純な方法である。
本稿では,1つのQ-関数を学習することで,対向学習を回避する動的適応型ILを提案する。
論文 参考訳(メタデータ) (2021-06-23T03:43:10Z) - Seeing Differently, Acting Similarly: Imitation Learning with
Heterogeneous Observations [126.78199124026398]
多くの実世界の模倣学習タスクでは、デモレーターと学習者は異なるが完全な観察空間で行動しなければならない。
本研究では、上記の学習問題を異種観察学習(HOIL)としてモデル化する。
本稿では,重要度重み付け,拒否学習,アクティブクエリに基づくIWREアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-06-17T05:44:04Z) - Teaching Key Machine Learning Principles Using Anti-learning Datasets [0.0]
我々は、最良の解に一般化する代替方法の教えを提唱する。
学生は、トレーニングプロセスから除外されたデータに対する検証の重要性についてより深く理解することができる。
論文 参考訳(メタデータ) (2020-11-16T05:43:40Z) - Overcoming the curse of dimensionality with Laplacian regularization in
semi-supervised learning [80.20302993614594]
ラプラシア正規化の欠点を克服するための統計的解析を提供する。
望ましい振る舞いを示すスペクトルフィルタリング法を多数発表する。
我々は,本手法を大量のデータで利用できるようにするために,現実的な計算ガイドラインを提供する。
論文 参考訳(メタデータ) (2020-09-09T14:28:54Z) - A Review of Meta-level Learning in the Context of Multi-component,
Multi-level Evolving Prediction Systems [6.810856082577402]
データから有用なパターンを抽出する自動的あるいは半自動的な方法の調査の必要性が高まっている。
与えられた問題に対する学習方法の最も適切なマッピングを見つけるには、深い専門家の知識と広範な計算資源が必要である。
データセットに最適な学習アルゴリズムをアドバイスできるインテリジェントなレコメンデーションエンジンが必要だ。
論文 参考訳(メタデータ) (2020-07-17T14:14:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。