論文の概要: MixRx: Predicting Drug Combination Interactions with LLMs
- arxiv url: http://arxiv.org/abs/2601.03277v1
- Date: Sun, 28 Dec 2025 05:37:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-11 18:48:17.593857
- Title: MixRx: Predicting Drug Combination Interactions with LLMs
- Title(参考訳): MixRx: LLMと薬物の相互作用を予測する
- Authors: Risha Surana, Cameron Saidock, Hugo Chacon,
- Abstract要約: 4種類のモデル, GPT-2, Mistral Instruct 2.0, そして微調整したモデルの性能について検討した。
この結果は、Mistral Instruct 2.0 Fine-Tunedモデルを用いて、標準および摂動データセットの平均精度スコアが81.5%であるようなアプリケーションの可能性を示した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: MixRx uses Large Language Models (LLMs) to classify drug combination interactions as Additive, Synergistic, or Antagonistic, given a multi-drug patient history. We evaluate the performance of 4 models, GPT-2, Mistral Instruct 2.0, and the fine-tuned counterparts. Our results showed a potential for such an application, with the Mistral Instruct 2.0 Fine-Tuned model providing an average accuracy score on standard and perturbed datasets of 81.5%. This paper aims to further develop an upcoming area of research that evaluates if LLMs can be used for biological prediction tasks.
- Abstract(参考訳): MixRxはLarge Language Models (LLMs) を使用して、薬物の組み合わせ相互作用を、多剤患者の歴史を与えられた追加性、シナジスティック、あるいはアンタゴニストとして分類する。
4種類のモデル, GPT-2, Mistral Instruct 2.0, そして微調整したモデルの性能について検討した。
この結果は、Mistral Instruct 2.0 Fine-Tunedモデルを用いて、標準および摂動データセットの平均精度スコアが81.5%であるようなアプリケーションの可能性を示した。
本稿では,生物予測タスクにLDMを使用できるかどうかを評価する,今後の研究分野をさらに発展させることを目的としている。
関連論文リスト
- A Hybrid Computational Intelligence Framework with Metaheuristic Optimization for Drug-Drug Interaction Prediction [0.8602553195689512]
薬物と薬物の相互作用(DDI)は予防可能な有害事象の主要な原因であり、しばしば治療を複雑にし、医療費を増大させる。
本稿では、DDI予測を改善するために、現代の機械学習とドメイン知識を融合した解釈可能かつ効率的なフレームワークを提案する。
提案手法は, フラグメントレベルの構造パターンをキャプチャする Mol2Vec と, 文脈化学的特徴を学習する SMILES-BERT の2つの補完的な埋め込みを組み合わせる。
論文 参考訳(メタデータ) (2025-10-08T09:55:18Z) - Retrieval Augmented Large Language Model System for Comprehensive Drug Contraindications [0.0]
大規模言語モデル(LLM)の汎用性は、様々な分野にわたって検討されてきたが、医療への応用には課題がある。
本研究では,レトリーバル拡張生成(RAG)パイプラインを実装することにより,LLMの対位法に効果的に対応する能力を高める。
論文 参考訳(メタデータ) (2025-08-08T09:09:03Z) - LLMs for Drug-Drug Interaction Prediction: A Comprehensive Comparison [3.2627279988912194]
大規模言語モデル (LLM) は様々な領域に革命をもたらしたが、薬学研究におけるその可能性はほとんど解明されていない。
本研究は薬物と薬物の相互作用(DDI)を予測するLLMの機能について徹底的に研究する。
プロプライエタリモデル(GPT-4, Claude, Gemini)やオープンソースモデル(1.5Bから72Bパラメータ)を含む18種類のLCMを評価した。
微調整のLLMは優れた性能を示し、Phi-3.5 2.7BはDDI予測において0.978の感度を達成し、バランスの取れたデータセットでは0.919の精度を実現した。
論文 参考訳(メタデータ) (2025-02-09T09:58:12Z) - "Knowing When You Don't Know": A Multilingual Relevance Assessment Dataset for Robust Retrieval-Augmented Generation [90.09260023184932]
Retrieval-Augmented Generation (RAG) は、外部の知識源を活用して、事実の幻覚を減らすことで、Large Language Model (LLM) を出力する。
NoMIRACLは18言語にまたがるRAGにおけるLDM堅牢性を評価するための人為的アノテーション付きデータセットである。
本研究は,<i>Halucination rate</i>,<i>Halucination rate</i>,<i>Halucination rate</i>,<i>Sorucination rate</i>,<i>Sorucination rate</i>,<i>Sorucination rate</i>,<i>Sorucination rate</i>,<i>Sorucination rate</i>,<i>Sorucination rate</i>,<i>Sr。
論文 参考訳(メタデータ) (2023-12-18T17:18:04Z) - Drug Synergistic Combinations Predictions via Large-Scale Pre-Training
and Graph Structure Learning [82.93806087715507]
薬物併用療法は、より有効で安全性の低い疾患治療のための確立された戦略である。
ディープラーニングモデルは、シナジスティックな組み合わせを発見する効率的な方法として登場した。
我々のフレームワークは、他のディープラーニングベースの手法と比較して最先端の結果を達成する。
論文 参考訳(メタデータ) (2023-01-14T15:07:43Z) - Neural Bandits for Data Mining: Searching for Dangerous Polypharmacy [63.135687276599114]
一部の多薬局は、不適切とみなされており、死亡や入院などの健康上の有害な結果に関係している可能性がある。
我々は、クレームデータセットを効率的にマイニングし、薬物の組み合わせと健康結果の関係の予測モデルを構築するためのOptimNeuralTS戦略を提案する。
提案手法では,最大72%のPIPを検出でき,平均精度は99%であり,30000タイムステップで検出できる。
論文 参考訳(メタデータ) (2022-12-10T03:43:23Z) - RECOVER: sequential model optimization platform for combination drug
repurposing identifies novel synergistic compounds in vitro [46.773794687622825]
深層学習モデルに適用した逐次モデル最適化探索を用いて,がん細胞株に対して高い相乗効果を持つ薬物の組み合わせを迅速に発見する。
モデルによりクエリされた組み合わせの集合は、非常にシナジスティックな組み合わせに富んでいることがわかった。
臨床的に検討中であることが判明した相乗効果薬の併用が再発見された。
論文 参考訳(メタデータ) (2022-02-07T02:54:29Z) - Graph2MDA: a multi-modal variational graph embedding model for
predicting microbe-drug associations [7.149873402253933]
微生物は抗菌剤の開発に新たな標的となっている。
微生物と薬物の関連性のスクリーニングは、薬物の研究と開発に大きな利益をもたらす。
微生物と薬物の関連性を予測する新しい方法であるGraph2MDAを提案する。
論文 参考訳(メタデータ) (2021-08-14T07:33:05Z) - Discovering Synergistic Drug Combinations for COVID with Biological
Bottleneck Models [38.637412590671865]
薬物と薬物の相互作用と相乗効果を共同で学習するリンパ球学的ボトルネックモデルを提案する。
このモデルは、ドラッグ・ターゲット・インタラクションとターゲット・ディスリーズ・アソシエーション・モジュールの2つの部分から構成される。
我々は米国国立翻訳科学センターでモデル予測を実験的に検証した。
論文 参考訳(メタデータ) (2020-11-09T03:30:44Z) - Ensemble Transfer Learning for the Prediction of Anti-Cancer Drug
Response [49.86828302591469]
本稿では,抗がん剤感受性の予測にトランスファーラーニングを適用した。
我々は、ソースデータセット上で予測モデルをトレーニングし、ターゲットデータセット上でそれを洗練する古典的な転送学習フレームワークを適用した。
アンサンブル転送学習パイプラインは、LightGBMと異なるアーキテクチャを持つ2つのディープニューラルネットワーク(DNN)モデルを使用して実装されている。
論文 参考訳(メタデータ) (2020-05-13T20:29:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。