論文の概要: LLMs for Drug-Drug Interaction Prediction: A Comprehensive Comparison
- arxiv url: http://arxiv.org/abs/2502.06890v1
- Date: Sun, 09 Feb 2025 09:58:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-12 14:08:40.547540
- Title: LLMs for Drug-Drug Interaction Prediction: A Comprehensive Comparison
- Title(参考訳): 薬物と薬物の相互作用予測のためのLCM:総合的比較
- Authors: Gabriele De Vito, Filomena Ferrucci, Athanasios Angelakis,
- Abstract要約: 大規模言語モデル (LLM) は様々な領域に革命をもたらしたが、薬学研究におけるその可能性はほとんど解明されていない。
本研究は薬物と薬物の相互作用(DDI)を予測するLLMの機能について徹底的に研究する。
プロプライエタリモデル(GPT-4, Claude, Gemini)やオープンソースモデル(1.5Bから72Bパラメータ)を含む18種類のLCMを評価した。
微調整のLLMは優れた性能を示し、Phi-3.5 2.7BはDDI予測において0.978の感度を達成し、バランスの取れたデータセットでは0.919の精度を実現した。
- 参考スコア(独自算出の注目度): 3.2627279988912194
- License:
- Abstract: The increasing volume of drug combinations in modern therapeutic regimens needs reliable methods for predicting drug-drug interactions (DDIs). While Large Language Models (LLMs) have revolutionized various domains, their potential in pharmaceutical research, particularly in DDI prediction, remains largely unexplored. This study thoroughly investigates LLMs' capabilities in predicting DDIs by uniquely processing molecular structures (SMILES), target organisms, and gene interaction data as raw text input from the latest DrugBank dataset. We evaluated 18 different LLMs, including proprietary models (GPT-4, Claude, Gemini) and open-source variants (from 1.5B to 72B parameters), first assessing their zero-shot capabilities in DDI prediction. We then fine-tuned selected models (GPT-4, Phi-3.5 2.7B, Qwen-2.5 3B, Gemma-2 9B, and Deepseek R1 distilled Qwen 1.5B) to optimize their performance. Our comprehensive evaluation framework included validation across 13 external DDI datasets, comparing against traditional approaches such as l2-regularized logistic regression. Fine-tuned LLMs demonstrated superior performance, with Phi-3.5 2.7B achieving a sensitivity of 0.978 in DDI prediction, with an accuracy of 0.919 on balanced datasets (50% positive, 50% negative cases). This result represents an improvement over both zero-shot predictions and state-of-the-art machine-learning methods used for DDI prediction. Our analysis reveals that LLMs can effectively capture complex molecular interaction patterns and cases where drug pairs target common genes, making them valuable tools for practical applications in pharmaceutical research and clinical settings.
- Abstract(参考訳): 現代の治療体制における薬物の組み合わせ量の増加は、薬物と薬物の相互作用(DDI)を予測するための信頼性の高い方法を必要とする。
LLM(Large Language Models)は様々な領域に革命をもたらしたが、薬学研究、特にDDI予測におけるその可能性はほとんど解明されていない。
本研究では、分子構造(SMILES)、標的生物、遺伝子相互作用データを最新のD薬バンクデータセットからの生テキスト入力として一意に処理することで、DDIを予測するLLMの能力について、徹底的に検討した。
我々は,プロプライエタリモデル (GPT-4, Claude, Gemini) とオープンソースモデル (1.5Bから72Bパラメータ) を含む18種類のLCMを評価し,まずDDI予測におけるゼロショット機能の評価を行った。
次に,選抜されたモデル(GPT-4,Phi-3.5 2.7B,Qwen-2.5 3B,Gemma-2 9B,Deepseek R1蒸留Qwen 1.5B)を微調整し,性能を最適化した。
我々の総合的な評価フレームワークは、13の外部DDIデータセットの検証を含み、l2正規化ロジスティック回帰のような従来のアプローチと比較した。
微調整LDMは優れた性能を示し、Phi-3.5 2.7BはDDI予測において0.978の感度を達成し、バランスの取れたデータセット上で0.919の精度(50%正、50%負の場合)を達成した。
この結果は、DDI予測に使用されるゼロショット予測と最先端の機械学習の両方よりも改善されたことを示している。
分析の結果,LSMは複雑な分子間相互作用パターンや薬物対が共通の遺伝子を標的とする場合を効果的に捉えることができ,医薬研究や臨床現場における実用的ツールとして有用であることが判明した。
関連論文リスト
- YZS-model: A Predictive Model for Organic Drug Solubility Based on Graph Convolutional Networks and Transformer-Attention [9.018408514318631]
伝統的な手法は複雑な分子構造を見逃し、不正確な結果をもたらすことが多い。
本稿では,グラフ畳み込みネットワーク(GCN),トランスフォーマーアーキテクチャ,Long Short-Term Memory(LSTM)ネットワークを統合するディープラーニングフレームワークであるYZS-Modelを紹介する。
YZS-Modelは、R2$ 0.59、RMSE$ 0.57を達成し、ベンチマークモデルを上回った。
論文 参考訳(メタデータ) (2024-06-27T12:40:29Z) - Extracting Training Data from Unconditional Diffusion Models [76.85077961718875]
拡散確率モデル(DPM)は、生成人工知能(AI)の主流モデルとして採用されている。
本研究の目的は,1) 理論解析のための記憶量,2) 情報ラベルとランダムラベルを用いた条件記憶量,3) 記憶量測定のための2つのより良い評価指標を用いて,DPMにおける記憶量の理論的理解を確立することである。
提案手法は,理論解析に基づいて,SIDE (textbfSurrogate condItional Data extract) と呼ばれる新しいデータ抽出手法を提案する。
論文 参考訳(メタデータ) (2024-06-18T16:20:12Z) - ADEP: A Novel Approach Based on Discriminator-Enhanced Encoder-Decoder Architecture for Accurate Prediction of Adverse Effects in Polypharmacy [0.0]
本稿では,識別器とエンコーダデコーダモデルを組み合わせた新しい手法であるADEPを紹介する。
ADEPは多薬効の悪影響を予測するために、複数の分類方法を含む3部モデルを採用している。
論文 参考訳(メタデータ) (2024-05-31T18:20:17Z) - Impact of Domain Knowledge and Multi-Modality on Intelligent Molecular Property Prediction: A Systematic Survey [22.73437302209673]
様々なベンチマークに基づいて,近年のディープラーニング手法を検証,定量的に分析する。
分子情報の統合は、回帰処理と分類処理の両方において分子特性予測(MPP)を大幅に改善する。
また、1D SMILESによる2Dグラフの強化により、回帰タスクのマルチモーダル学習性能が最大9.1%向上し、3D情報による2Dグラフの増大により、分類タスクのパフォーマンスが最大13.2%向上することを発見した。
論文 参考訳(メタデータ) (2024-02-11T17:29:58Z) - Drug Synergistic Combinations Predictions via Large-Scale Pre-Training
and Graph Structure Learning [82.93806087715507]
薬物併用療法は、より有効で安全性の低い疾患治療のための確立された戦略である。
ディープラーニングモデルは、シナジスティックな組み合わせを発見する効率的な方法として登場した。
我々のフレームワークは、他のディープラーニングベースの手法と比較して最先端の結果を達成する。
論文 参考訳(メタデータ) (2023-01-14T15:07:43Z) - SSM-DTA: Breaking the Barriers of Data Scarcity in Drug-Target Affinity
Prediction [127.43571146741984]
薬物標的親和性(DTA)は、早期の薬物発見において極めて重要である。
湿式実験は依然として最も信頼性の高い方法であるが、時間と資源が集中している。
既存の手法は主に、データ不足の問題に適切に対処することなく、利用可能なDTAデータに基づく技術開発に重点を置いている。
SSM-DTAフレームワークについて述べる。
論文 参考訳(メタデータ) (2022-06-20T14:53:25Z) - Multi-View Substructure Learning for Drug-Drug Interaction Prediction [69.34322811160912]
DDI予測のための新しいマルチビュードラッグサブ構造ネットワーク(MSN-DDI)を提案する。
MSN-DDIは、単一の薬物(イントラビュー)と薬物ペア(インタービュー)の両方の表現から化学的サブ構造を同時に学習し、そのサブ構造を利用して、薬物表現を反復的に更新する。
総合的な評価では、MSN-DDIは、トランスダクティブ・セッティングの下で比較的改善された19.32%と99%以上の精度を達成することで、既存の薬物に対するDDI予測をほぼ解決したことを示している。
論文 参考訳(メタデータ) (2022-03-28T05:44:29Z) - Multiple Similarity Drug-Target Interaction Prediction with Random Walks
and Matrix Factorization [16.41618129467975]
我々は、異なるレイヤが薬物と標的の異なる類似度メトリクスに対応する、多層ネットワークの視点を捉えている。
複数のビューでキャプチャされたトポロジ情報を完全に活用するために,DTI予測のための最適化フレームワーク MDMF を開発した。
このフレームワークは、すべての超分子層にまたがる高次近接を維持するだけでなく、内部積との相互作用を近似する薬物や標的のベクトル表現を学習する。
論文 参考訳(メタデータ) (2022-01-24T08:02:05Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
本稿では,新しいコントラスト型正規化臨床分類モデルを提案する。
EHRデータに特化した2つのユニークなポジティブサンプリング戦略を紹介します。
私たちのフレームワークは、現実世界のCOVID-19 EHRデータの死亡リスクを予測するために、競争の激しい実験結果をもたらします。
論文 参考訳(メタデータ) (2021-04-07T06:02:04Z) - AttentionDDI: Siamese Attention-based Deep Learning method for drug-drug
interaction predictions [0.9176056742068811]
薬物と薬物の相互作用(DDIs)は、2つ以上の薬物の投与によって引き起こされるプロセスを指し、薬物が自分自身によって投与されるときに観察されるものを超える副作用をもたらす。
大量の薬物対が存在するため、すべての組み合わせを実験的にテストし、以前は観測されていなかった副作用を発見することはほとんど不可能である。
本稿では,複数の薬物類似度尺度を統合するddi予測のためのsiamese self-attention multi-modal neural networkを提案する。
論文 参考訳(メタデータ) (2020-12-24T13:33:07Z) - Ensemble Transfer Learning for the Prediction of Anti-Cancer Drug
Response [49.86828302591469]
本稿では,抗がん剤感受性の予測にトランスファーラーニングを適用した。
我々は、ソースデータセット上で予測モデルをトレーニングし、ターゲットデータセット上でそれを洗練する古典的な転送学習フレームワークを適用した。
アンサンブル転送学習パイプラインは、LightGBMと異なるアーキテクチャを持つ2つのディープニューラルネットワーク(DNN)モデルを使用して実装されている。
論文 参考訳(メタデータ) (2020-05-13T20:29:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。