論文の概要: Experimental Comparison of Light-Weight and Deep CNN Models Across Diverse Datasets
- arxiv url: http://arxiv.org/abs/2601.03463v1
- Date: Tue, 06 Jan 2026 23:22:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-08 18:12:46.088754
- Title: Experimental Comparison of Light-Weight and Deep CNN Models Across Diverse Datasets
- Title(参考訳): 各種データセット間の軽量CNNモデルと深部CNNモデルの比較実験
- Authors: Md. Hefzul Hossain Papon, Shadman Rabby,
- Abstract要約: この研究は、バングラデシュの複数のビジョンデータセットのための統一された再現可能なベンチマークを確立し、低リソース環境における現実的なデプロイのための軽量CNNの実用的価値を強調している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Our results reveal that a well-regularized shallow architecture can serve as a highly competitive baseline across heterogeneous domains - from smart-city surveillance to agricultural variety classification - without requiring large GPUs or specialized pre-trained models. This work establishes a unified, reproducible benchmark for multiple Bangladeshi vision datasets and highlights the practical value of lightweight CNNs for real-world deployment in low-resource settings.
- Abstract(参考訳): この結果から,高度に規則化された浅層アーキテクチャは,スマートシティ監視から農業品種分類に至るまで,大規模なGPUや特別な事前学習モデルを必要としない,異種ドメイン間の競争力の高いベースラインとして機能することが判明した。
この研究は、バングラデシュの複数のビジョンデータセットのための統一された再現可能なベンチマークを確立し、低リソース環境における現実的なデプロイのための軽量CNNの実用的価値を強調している。
関連論文リスト
- LAR-IQA: A Lightweight, Accurate, and Robust No-Reference Image Quality Assessment Model [6.074775040047959]
我々は,ECCV AIM UHD-IQAチャレンジ検証とテストデータセット上での最先端(SOTA)性能を実現する,コンパクトで軽量なNR-IQAモデルを提案する。
本モデルでは,合成および音響的に歪んだ画像に対して,各枝を個別に訓練した二重ブランチアーキテクチャを特徴とする。
各種オープンソースデータセットを考慮した評価では,提案した軽量モデルの実用的,高精度,堅牢な性能を強調した。
論文 参考訳(メタデータ) (2024-08-30T07:32:19Z) - Visual Prompting Upgrades Neural Network Sparsification: A Data-Model Perspective [64.04617968947697]
より優れた重量空間を実現するために、新しいデータモデル共設計視点を導入する。
具体的には、提案したVPNフレームワークでニューラルネットワークのスパーシフィケーションをアップグレードするために、カスタマイズされたVisual Promptが実装されている。
論文 参考訳(メタデータ) (2023-12-03T13:50:24Z) - StableLLaVA: Enhanced Visual Instruction Tuning with Synthesized
Image-Dialogue Data [129.92449761766025]
本稿では,視覚的インストラクションチューニングのための画像と対話を同期的に合成する新しいデータ収集手法を提案する。
このアプローチは生成モデルのパワーを活用し、ChatGPTとテキスト・ツー・イメージ生成モデルの能力とを結合する。
本研究は,各種データセットを対象とした総合的な実験を含む。
論文 参考訳(メタデータ) (2023-08-20T12:43:52Z) - A Study on the Generality of Neural Network Structures for Monocular
Depth Estimation [14.09373215954704]
分子深度推定の一般化に向けて,様々なバックボーンネットワークを深く研究する。
我々は、分布内と分布外の両方のデータセット上で、最先端のモデルを評価する。
我々はトランスフォーマーがCNNよりも強い形状バイアスを示すのを観察した。
論文 参考訳(メタデータ) (2023-01-09T04:58:12Z) - CHALLENGER: Training with Attribution Maps [63.736435657236505]
ニューラルネットワークのトレーニングに属性マップを利用すると、モデルの正規化が向上し、性能が向上することを示す。
特に、我々の汎用的なドメインに依存しないアプローチは、ビジョン、自然言語処理、時系列タスクにおける最先端の結果をもたらすことを示す。
論文 参考訳(メタデータ) (2022-05-30T13:34:46Z) - Diversity inducing Information Bottleneck in Model Ensembles [73.80615604822435]
本稿では,予測の多様性を奨励することで,ニューラルネットワークの効果的なアンサンブルを生成する問題をターゲットにする。
そこで本研究では,潜伏変数の学習における逆損失の多様性を明示的に最適化し,マルチモーダルデータのモデリングに必要な出力予測の多様性を得る。
最も競争力のあるベースラインと比較して、データ分布の変化の下で、分類精度が大幅に向上した。
論文 参考訳(メタデータ) (2020-03-10T03:10:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。