論文の概要: LAR-IQA: A Lightweight, Accurate, and Robust No-Reference Image Quality Assessment Model
- arxiv url: http://arxiv.org/abs/2408.17057v2
- Date: Fri, 6 Sep 2024 17:15:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-09 17:50:10.867556
- Title: LAR-IQA: A Lightweight, Accurate, and Robust No-Reference Image Quality Assessment Model
- Title(参考訳): LAR-IQA:軽量・高精度・ロバストな非参照画像品質評価モデル
- Authors: Nasim Jamshidi Avanaki, Abhijay Ghildyal, Nabajeet Barman, Saman Zadtootaghaj,
- Abstract要約: 我々は,ECCV AIM UHD-IQAチャレンジ検証とテストデータセット上での最先端(SOTA)性能を実現する,コンパクトで軽量なNR-IQAモデルを提案する。
本モデルでは,合成および音響的に歪んだ画像に対して,各枝を個別に訓練した二重ブランチアーキテクチャを特徴とする。
各種オープンソースデータセットを考慮した評価では,提案した軽量モデルの実用的,高精度,堅牢な性能を強調した。
- 参考スコア(独自算出の注目度): 6.074775040047959
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Recent advancements in the field of No-Reference Image Quality Assessment (NR-IQA) using deep learning techniques demonstrate high performance across multiple open-source datasets. However, such models are typically very large and complex making them not so suitable for real-world deployment, especially on resource- and battery-constrained mobile devices. To address this limitation, we propose a compact, lightweight NR-IQA model that achieves state-of-the-art (SOTA) performance on ECCV AIM UHD-IQA challenge validation and test datasets while being also nearly 5.7 times faster than the fastest SOTA model. Our model features a dual-branch architecture, with each branch separately trained on synthetically and authentically distorted images which enhances the model's generalizability across different distortion types. To improve robustness under diverse real-world visual conditions, we additionally incorporate multiple color spaces during the training process. We also demonstrate the higher accuracy of recently proposed Kolmogorov-Arnold Networks (KANs) for final quality regression as compared to the conventional Multi-Layer Perceptrons (MLPs). Our evaluation considering various open-source datasets highlights the practical, high-accuracy, and robust performance of our proposed lightweight model. Code: https://github.com/nasimjamshidi/LAR-IQA.
- Abstract(参考訳): ディープラーニング技術を用いたNo-Reference Image Quality Assessment(NR-IQA)の分野での最近の進歩は、複数のオープンソースデータセット間で高いパフォーマンスを示す。
しかし、そのようなモデルは一般的に非常に大きく、複雑であるため、特にリソースやバッテリーに制約のあるモバイルデバイスにおいて、現実のデプロイメントには適さない。
この制限に対処するために,高速SOTAモデルよりも5.7倍近い速度で,ECCV AIM UHD-IQAチャレンジ検証およびテストデータセット上での最先端(SOTA)性能を実現する,コンパクトで軽量なNR-IQAモデルを提案する。
本モデルでは両分岐アーキテクチャを特徴とし,各分岐を合成的および音響的に歪んだ画像に別々に訓練することにより,歪みの異なるモデルの一般化性を向上する。
実世界の多様な視覚条件下でのロバスト性を改善するため、トレーニングプロセス中に複数の色空間を組み込む。
また,最近提案されたKAN(Kolmogorov-Arnold Networks)の,従来のMLP(Multi-Layer Perceptrons)と比較して,最終的な品質劣化に対する高い精度を示す。
各種オープンソースデータセットを考慮した評価では,提案した軽量モデルの実用的,高精度,堅牢な性能を強調した。
コード:https://github.com/nasimjamshidi/LAR-IQA。
関連論文リスト
- Adaptable Embeddings Network (AEN) [49.1574468325115]
我々はカーネル密度推定(KDE)を用いた新しいデュアルエンコーダアーキテクチャであるAdaptable Embeddings Networks (AEN)を紹介する。
AENは、再トレーニングせずに分類基準のランタイム適応を可能にし、非自己回帰的である。
アーキテクチャのプリプロセスとキャッシュ条件の埋め込み能力は、エッジコンピューティングアプリケーションやリアルタイム監視システムに最適である。
論文 参考訳(メタデータ) (2024-11-21T02:15:52Z) - Large Multi-modality Model Assisted AI-Generated Image Quality Assessment [53.182136445844904]
本稿では,AI生成画像品質評価モデル(MA-AGIQA)を提案する。
セマンティックインフォームドガイダンスを使用して意味情報を感知し、慎重に設計されたテキストプロンプトを通してセマンティックベクターを抽出する。
最先端のパフォーマンスを実現し、AI生成画像の品質を評価する上で優れた一般化能力を示す。
論文 参考訳(メタデータ) (2024-04-27T02:40:36Z) - Multi-Modal Prompt Learning on Blind Image Quality Assessment [65.0676908930946]
画像品質評価(IQA)モデルは意味情報から大きな恩恵を受け、異なる種類のオブジェクトを明瞭に扱うことができる。
十分な注釈付きデータが不足している従来の手法では、セマンティックな認識を得るために、CLIPイメージテキスト事前学習モデルをバックボーンとして使用していた。
近年のアプローチでは、このミスマッチに即時技術を使って対処する試みがあるが、これらの解決策には欠点がある。
本稿では、IQAのための革新的なマルチモーダルプロンプトベースの手法を提案する。
論文 参考訳(メタデータ) (2024-04-23T11:45:32Z) - Transformer-based No-Reference Image Quality Assessment via Supervised
Contrastive Learning [36.695247860715874]
本稿では,新しいコントラスト学習 (Contrastive Learning, SCL) と NR-IQA モデル SaTQA を提案する。
まず、SCLによる大規模合成データセット上にモデルをトレーニングし、様々な歪みタイプとレベルの画像の劣化特徴を抽出する。
画像から歪み情報を抽出するために,CNNインダクティブバイアスとTransformerの長期依存性モデリング機能を組み合わせることで,マルチストリームブロック(MSB)を組み込んだバックボーンネットワークを提案する。
7つの標準IQAデータセットの実験結果から、SaTQAは合成データセットと認証データセットの両方において最先端の手法より優れていることが示された。
論文 参考訳(メタデータ) (2023-12-12T06:01:41Z) - Learning Generalizable Perceptual Representations for Data-Efficient
No-Reference Image Quality Assessment [7.291687946822539]
最先端のNR-IQA技術の大きな欠点は、多数の人間のアノテーションに依存していることである。
低レベルな特徴の学習を、新しい品質に配慮したコントラスト損失を導入することで、歪みタイプの学習を可能にする。
両経路からゼロショット品質の予測を、完全に盲目な環境で設計する。
論文 参考訳(メタデータ) (2023-12-08T05:24:21Z) - You Only Train Once: A Unified Framework for Both Full-Reference and No-Reference Image Quality Assessment [45.62136459502005]
本稿では,完全な参照 (FR) と非参照 (NR) IQA を行うネットワークを提案する。
まず、入力画像から多レベル特徴を抽出するためにエンコーダを用いる。
FRおよびNR入力のユニバーサルアダプタとして階層的注意(HA)モジュールを提案する。
エンコーダの浅い層と深い層との間の特徴相関を調べるために, セマンティック・ディストーション・アウェア (SDA) モジュールを提案する。
論文 参考訳(メタデータ) (2023-10-14T11:03:04Z) - CONVIQT: Contrastive Video Quality Estimator [63.749184706461826]
知覚ビデオ品質評価(VQA)は、多くのストリーミングおよびビデオ共有プラットフォームにおいて不可欠な要素である。
本稿では,視覚的に関連のある映像品質表現を自己指導的に学習する問題について考察する。
本研究は, 自己教師型学習を用いて, 知覚力による説得力のある表現が得られることを示す。
論文 参考訳(メタデータ) (2022-06-29T15:22:01Z) - Learning Transformer Features for Image Quality Assessment [53.51379676690971]
本稿では,CNNバックボーンとトランスフォーマーエンコーダを用いて特徴抽出を行うIQAフレームワークを提案する。
提案するフレームワークはFRモードとNRモードの両方と互換性があり、共同トレーニング方式が可能である。
論文 参考訳(メタデータ) (2021-12-01T13:23:00Z) - Knowledge Distillation for Quality Estimation [79.51452598302934]
QE(Quality Estimation)は、参照翻訳のない機械翻訳の品質を自動的に予測するタスクである。
QEの最近の成功は、非常に大きなモデルが印象的な結果をもたらす多言語事前学習表現の使用に起因している。
提案手法は, データ拡張と組み合わせて, 8倍のパラメータを持つ蒸留前学習表現と競合する軽量QEモデルをもたらすことを示す。
論文 参考訳(メタデータ) (2021-07-01T12:36:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。