論文の概要: Towards Real-world Lens Active Alignment with Unlabeled Data via Domain Adaptation
- arxiv url: http://arxiv.org/abs/2601.03718v1
- Date: Wed, 07 Jan 2026 09:13:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-09 02:15:23.385159
- Title: Towards Real-world Lens Active Alignment with Unlabeled Data via Domain Adaptation
- Title(参考訳): ドメイン適応によるラベルなしデータを用いた実世界のレンズアクティブアライメントに向けて
- Authors: Wenyong Lia, Qi Jiang, Weijian Hu, Kailun Yang, Zhanjun Zhang, Wenjun Tian, Kaiwei Wang, Jian Bai,
- Abstract要約: 光シミュレーション上に構築されたデジタルツインパイプラインは、大規模ラベル付きデータを生成する上で大きな利点がある。
ドメイン適応は、実世界の堅牢なパフォーマンスを持つシミュレーション訓練されたモデルを効果的に提供します。
- 参考スコア(独自算出の注目度): 17.516258928903635
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Active Alignment (AA) is a key technology for the large-scale automated assembly of high-precision optical systems. Compared with labor-intensive per-model on-device calibration, a digital-twin pipeline built on optical simulation offers a substantial advantage in generating large-scale labeled data. However, complex imaging conditions induce a domain gap between simulation and real-world images, limiting the generalization of simulation-trained models. To address this, we propose augmenting a simulation baseline with minimal unlabeled real-world images captured at random misalignment positions, mitigating the gap from a domain adaptation perspective. We introduce Domain Adaptive Active Alignment (DA3), which utilizes an autoregressive domain transformation generator and an adversarial-based feature alignment strategy to distill real-world domain information via self-supervised learning. This enables the extraction of domain-invariant image degradation features to facilitate robust misalignment prediction. Experiments on two lens types reveal that DA3 improves accuracy by 46% over a purely simulation pipeline. Notably, it approaches the performance achieved with precisely labeled real-world data collected on 3 lens samples, while reducing on-device data collection time by 98.7%. The results demonstrate that domain adaptation effectively endows simulation-trained models with robust real-world performance, validating the digital-twin pipeline as a practical solution to significantly enhance the efficiency of large-scale optical assembly.
- Abstract(参考訳): アクティブアライメント(AA)は、高精度光学系の大規模自動組み立てのための重要な技術である。
労働集約型オンデバイスキャリブレーションと比較して、光学シミュレーション上に構築されたデジタルツインパイプラインは、大規模ラベル付きデータを生成する上で大きな利点がある。
しかし、複雑な撮像条件はシミュレーションと実世界の画像の間に領域ギャップを生じさせ、シミュレーション訓練されたモデルの一般化を制限する。
そこで本研究では,ランダムな不整合位置で撮影された最小のラベルのない実世界の画像を用いたシミュレーションベースラインの拡張を提案し,ドメイン適応の観点からのギャップを緩和する。
本稿では,自己回帰型ドメイン変換生成器と対向型機能アライメント戦略を利用するドメイン適応型アクティブアライメント(DA3)を導入し,実世界のドメイン情報を自己教師付き学習により抽出する。
これにより、領域不変な画像劣化特徴の抽出により、堅牢な誤認識予測が容易になる。
2種類のレンズの実験では、DA3は純粋にシミュレーションパイプラインよりも46%精度が向上している。
特に、3つのレンズサンプルで収集された実世界のデータを正確にラベル付けし、デバイス上でのデータ収集時間を98.7%削減することで達成されたパフォーマンスに近づいた。
その結果、ドメイン適応は、実世界の堅牢な実環境性能を持つシミュレーション学習モデルを効果的に実現し、デジタルツインパイプラインを実用的ソリューションとして検証し、大規模光アセンブリの効率を大幅に向上することを示した。
関連論文リスト
- Topology-Aware Modeling for Unsupervised Simulation-to-Reality Point Cloud Recognition [63.55828203989405]
我々はオブジェクトポイントクラウド上でSim2Real UDAのための新しいTopology-Aware Modeling (TAM)フレームワークを紹介する。
提案手法は,低レベルの高周波3次元構造を特徴とするグローバル空間トポロジを利用して,領域間隙を緩和する。
本稿では,クロスドメイン・コントラスト学習と自己学習を組み合わせた高度な自己学習戦略を提案する。
論文 参考訳(メタデータ) (2025-06-26T11:53:59Z) - CTS: Sim-to-Real Unsupervised Domain Adaptation on 3D Detection [16.96201890965781]
本稿では,ラベル付きシミュレーションからラベル付き現実領域へモデルを転送するための新しいフレームワークを提案する。
実験結果から,提案手法は3次元物体検出モデルの実領域適応能力を大幅に向上することが示された。
論文 参考訳(メタデータ) (2024-06-26T07:31:16Z) - SE(3) Diffusion Model-based Point Cloud Registration for Robust 6D
Object Pose Estimation [66.16525145765604]
実世界のシナリオにおける6次元オブジェクトポーズ推定のためのSE(3)拡散モデルに基づく点クラウド登録フレームワークを提案する。
提案手法は,3次元登録タスクをデノナイズ拡散過程として定式化し,音源雲の姿勢を段階的に洗練する。
実世界のTUD-L, LINEMOD, およびOccluded-LINEMODデータセットにおいて, 拡散登録フレームワークが顕著なポーズ推定性能を示すことを示す。
論文 参考訳(メタデータ) (2023-10-26T12:47:26Z) - One-Shot Domain Adaptive and Generalizable Semantic Segmentation with
Class-Aware Cross-Domain Transformers [96.51828911883456]
セマンティックセグメンテーションのための教師なしのsim-to-realドメイン適応(UDA)は、シミュレーションデータに基づいて訓練されたモデルの実世界のテスト性能を改善することを目的としている。
従来のUDAは、適応のためのトレーニング中に利用可能なラベルのない実世界のサンプルが豊富にあると仮定することが多い。
実世界のデータサンプルが1つしか利用できない,一発の教師なしシム・トゥ・リアル・ドメイン適応(OSUDA)と一般化問題について検討する。
論文 参考訳(メタデータ) (2022-12-14T15:54:15Z) - Progressive Transformation Learning for Leveraging Virtual Images in
Training [21.590496842692744]
本稿では,PTL(Progressive Transformation Learning)を導入し,リアル性を高めた仮想画像を追加することにより,トレーニングデータセットを増強する。
1) 領域ギャップに応じて仮想イメージのプールからサブセットを選択する,2) 選択した仮想イメージを変換してリアリズムを向上する,3) 変換された仮想イメージをトレーニングセットに追加する,という3つのステップを段階的に繰り返す。
実験により、PTLは、特に小さなデータとクロスドメインシステムにおいて、ベースラインよりも大幅にパフォーマンスが向上することが示された。
論文 参考訳(メタデータ) (2022-11-03T13:04:15Z) - Stacking Ensemble Learning in Deep Domain Adaptation for Ophthalmic
Image Classification [61.656149405657246]
ドメイン適応は、十分なラベルデータを取得することが困難な画像分類タスクに有効である。
本稿では,3つのドメイン適応手法を拡張することで,アンサンブル学習を積み重ねるための新しい手法SELDAを提案する。
Age-Related Eye Disease Study (AREDS)ベンチマーク眼科データセットを用いた実験結果から,提案モデルの有効性が示された。
論文 参考訳(メタデータ) (2022-09-27T14:19:00Z) - Towards Scale Consistent Monocular Visual Odometry by Learning from the
Virtual World [83.36195426897768]
仮想データから絶対スケールを取得するための新しいフレームワークであるVRVOを提案する。
まず、モノクロ実画像とステレオ仮想データの両方を用いて、スケール対応の異種ネットワークをトレーニングする。
結果として生じるスケール一貫性の相違は、直接VOシステムと統合される。
論文 参考訳(メタデータ) (2022-03-11T01:51:54Z) - Deep Domain Adversarial Adaptation for Photon-efficient Imaging Based on
Spatiotemporal Inception Network [11.58898808789911]
単光子LiDARでは、光子効率の撮像がシーンの3D構造を1ピクセル当たりの信号でキャプチャする。
このタスクの既存のディープラーニングモデルは、シミュレーションデータセットに基づいてトレーニングされている。
本研究では,空間的・時間的情報を完全に活用して,スパース・ハイノイズ光子計数ヒストグラムから奥行きを正確に予測できる光子効率イメージングのためのネットワーク(STIN)を提案する。
論文 参考訳(メタデータ) (2022-01-07T14:51:48Z) - Cycle and Semantic Consistent Adversarial Domain Adaptation for Reducing
Simulation-to-Real Domain Shift in LiDAR Bird's Eye View [110.83289076967895]
ドメイン適応プロセス中に関心のある小さなオブジェクトの情報を保存するために,事前の意味分類を用いたサイクガンに基づくbevドメイン適応法を提案する。
生成したBEVの品質は,KITTI 3D Object Detection Benchmarkの最先端3Dオブジェクト検出フレームワークを用いて評価されている。
論文 参考訳(メタデータ) (2021-04-22T12:47:37Z) - Domain-invariant Similarity Activation Map Contrastive Learning for
Retrieval-based Long-term Visual Localization [30.203072945001136]
本研究では,多領域画像変換による領域不変特徴抽出のために,確率論的に一般アーキテクチャを定式化する。
そして、より精密な局所化のために、新しい勾配重み付き類似性活性化写像損失(Grad-SAM)を組み込んだ。
CMUSeasonsデータセットにおける提案手法の有効性を検証するために大規模な実験が行われた。
我々の性能は、最先端のイメージベースのローカライゼーションベースラインを中あるいは高精度で上回るか、あるいは上回る。
論文 参考訳(メタデータ) (2020-09-16T14:43:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。