論文の概要: RadDiff: Describing Differences in Radiology Image Sets with Natural Language
- arxiv url: http://arxiv.org/abs/2601.03733v1
- Date: Wed, 07 Jan 2026 09:25:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-08 18:12:46.172552
- Title: RadDiff: Describing Differences in Radiology Image Sets with Natural Language
- Title(参考訳): RadDiff: 自然言語を用いた放射線画像セットの違いを記述
- Authors: Xiaoxian Shen, Yuhui Zhang, Sahithi Ankireddy, Xiaohan Wang, Maya Varma, Henry Guo, Curtis Langlotz, Serena Yeung-Levy,
- Abstract要約: RadDiffは放射線学的な比較推論を行うマルチモーダルエージェントシステムである。
RadDiffBenchでは、47%の精度と50%の精度を実現している。
- 参考スコア(独自算出の注目度): 52.774737253784
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Understanding how two radiology image sets differ is critical for generating clinical insights and for interpreting medical AI systems. We introduce RadDiff, a multimodal agentic system that performs radiologist-style comparative reasoning to describe clinically meaningful differences between paired radiology studies. RadDiff builds on a proposer-ranker framework from VisDiff, and incorporates four innovations inspired by real diagnostic workflows: (1) medical knowledge injection through domain-adapted vision-language models; (2) multimodal reasoning that integrates images with their clinical reports; (3) iterative hypothesis refinement across multiple reasoning rounds; and (4) targeted visual search that localizes and zooms in on salient regions to capture subtle findings. To evaluate RadDiff, we construct RadDiffBench, a challenging benchmark comprising 57 expert-validated radiology study pairs with ground-truth difference descriptions. On RadDiffBench, RadDiff achieves 47% accuracy, and 50% accuracy when guided by ground-truth reports, significantly outperforming the general-domain VisDiff baseline. We further demonstrate RadDiff's versatility across diverse clinical tasks, including COVID-19 phenotype comparison, racial subgroup analysis, and discovery of survival-related imaging features. Together, RadDiff and RadDiffBench provide the first method-and-benchmark foundation for systematically uncovering meaningful differences in radiological data.
- Abstract(参考訳): 2つの放射線画像がどう異なるかを理解することは、臨床的な洞察を生み出し、医療AIシステムを理解するために重要である。
RadDiffは, 放射線医学的比較分析を行うマルチモーダル・エージェント・システムである。
RadDiff は VisDiff のプロジェクタランカフレームワークを基盤として,(1) ドメイン適応型視覚言語モデルによる医療知識注入,(2) 画像と臨床報告を統合するマルチモーダル推論,(3) 複数の推論ラウンドをまたいだ反復的仮説改善,(4) 微妙な発見を捉えるために局所化とズームを行うターゲットビジュアルサーチの4つの革新を取り入れている。
RadDiff の評価のために,57 個の専門的放射線学研究用ペアと接地構造の違い記述を併用した評価ベンチマーク RadDiffBench を構築した。
RadDiffBench上では、RadDiffは47%の精度と50%の精度を実現し、一般ドメインのVisDiffベースラインを大幅に上回っている。
我々はさらに、COVID-19の表現型比較、人種的サブグループ分析、生存に関連する画像特徴の発見など、さまざまな臨床タスクにおけるRadDiffの汎用性を実証した。
RadDiffとRadDiffBenchは共同で、放射線学的データの有意義な差異を体系的に発見するための、最初の方法とベンチマークの基礎を提供する。
関連論文リスト
- RAD: Towards Trustworthy Retrieval-Augmented Multi-modal Clinical Diagnosis [56.373297358647655]
Retrieval-Augmented Diagnosis (RAD)は、下流タスクで直接マルチモーダルモデルに外部知識を注入する新しいフレームワークである。
RADは、複数の医療ソースからの疾患中心の知識の検索と改善、ガイドライン強化コントラスト損失トランスフォーマー、デュアルデコーダの3つの主要なメカニズムで機能する。
論文 参考訳(メタデータ) (2025-09-24T10:36:14Z) - FoundDiff: Foundational Diffusion Model for Generalizable Low-Dose CT Denoising [55.04342933312839]
本稿では,CT(低線量CT)デノナイズのための基礎拡散モデルFoundDiffを提案する。
FoundDiffは、(i)線量解剖学的知覚と(ii)適応的認知という2段階の戦略を採用している。
まず, 線量および解剖学的知覚を実現するために, 線量および解剖学的対応型コントラスト言語画像事前訓練モデル(DA-CLIP)を開発した。
第2に,適応的および一般化可能な復調を行うために,線量および解剖学的拡散モデル(DA-Diff)を設計する。
論文 参考訳(メタデータ) (2025-08-24T11:03:56Z) - A Chain of Diagnosis Framework for Accurate and Explainable Radiology Report Generation [4.61181046331792]
臨床的に正確かつ説明可能なRRGの診断過程の連鎖を維持できる,診断の連鎖(CoD)というフレームワークを提案する。
説明可能性を高めるために、診断基盤モジュールは、診断が参照として機能するQA診断と生成された文とを一致させるように設計されている。
本研究は,1)QAペアと病変箱を用いた完全ラベルRRGデータセット,2)病変位置と重症度を記述した報告の精度を評価するための評価ツール,3)CoDの有効性を実証するための広範な実験に導いた。
論文 参考訳(メタデータ) (2025-08-13T07:32:28Z) - Beyond Images: An Integrative Multi-modal Approach to Chest X-Ray Report
Generation [47.250147322130545]
画像からテキストまでの放射線学レポート生成は,医療画像の発見を記述した放射線学レポートを自動生成することを目的としている。
既存の方法の多くは画像データのみに焦点をあてており、他の患者情報は放射線科医に公開されていない。
胸部X線レポートを生成するための多モードディープニューラルネットワークフレームワークを,非構造的臨床ノートとともにバイタルサインや症状などの構造化された患者データを統合することで提案する。
論文 参考訳(メタデータ) (2023-11-18T14:37:53Z) - Enhanced Knowledge Injection for Radiology Report Generation [21.937372129714884]
本稿では,異なる種類の知識を抽出するために2つの分野を利用する知識注入フレームワークを提案する。
この微細でよく構造化された知識を現在の画像と統合することにより、マルチソースの知識の獲得を活用して、最終的により正確なレポート生成を可能にします。
論文 参考訳(メタデータ) (2023-11-01T09:50:55Z) - Act Like a Radiologist: Radiology Report Generation across Anatomical Regions [50.13206214694885]
X-RGenは6つの解剖学的領域にわたる放射線学者によるレポート生成フレームワークである。
X-RGenでは、ヒトの放射線学者の行動を模倣し、これらを4つの主要な段階に分解する。
画像エンコーダの認識能力は,各領域にまたがる画像やレポートを分析して向上する。
論文 参考訳(メタデータ) (2023-05-26T07:12:35Z) - Local Contrastive Learning for Medical Image Recognition [0.0]
Local Region Contrastive Learning(LRCLR)は、画像領域の選択と相互モダリティの相互作用のためのレイヤを追加するフレキシブルな微調整フレームワークである。
胸部X線検査の結果から,LRCLRは重要な局所画像領域を同定し,放射線学的テキストに対して有意義な解釈を提供する可能性が示唆された。
論文 参考訳(メタデータ) (2023-03-24T17:04:26Z) - Differential Diagnosis of Frontotemporal Dementia and Alzheimer's
Disease using Generative Adversarial Network [0.0]
前頭側頭性認知症とアルツハイマー病は2種類の認知症であり、互いに誤診しやすい。
2種類の認知症を区別することは、疾患特異的な介入と治療を決定するのに不可欠である。
医用画像処理分野におけるディープラーニングベースのアプローチの最近の発展は、多くのバイナリ分類タスクにおいて、最高のパフォーマンスを実現している。
論文 参考訳(メタデータ) (2021-09-12T22:40:50Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
我々は,X線に基づく疾患分類のための新しい確率的推論フレームワークである反復的知識蒸留(VKD)を提案する。
提案手法の有効性を,X線画像とEHRを用いた3つの公開ベンチマークデータセットに示す。
論文 参考訳(メタデータ) (2021-03-19T14:13:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。