論文の概要: Evaluating Small Decoder-Only Language Models for Grammar Correction and Text Simplification
- arxiv url: http://arxiv.org/abs/2601.03874v1
- Date: Wed, 07 Jan 2026 12:39:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-09 02:15:23.508062
- Title: Evaluating Small Decoder-Only Language Models for Grammar Correction and Text Simplification
- Title(参考訳): 文法補正とテキスト簡易化のための小型デコーダ専用言語モデルの評価
- Authors: Anthony Lamelas,
- Abstract要約: 本稿では,小型のデコーダのみの言語モデルが文法修正やテキストの簡略化といったタスクに対して,効率的な代替手段となるかどうかを考察する。
本稿では,JFLEG と ASSET データセット上で連続的に実行される小型言語モデルのボックス外でのテストに焦点をあてる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models have become extremely popular recently due to their ability to achieve strong performance on a variety of tasks, such as text generation and rewriting, but their size and computation cost make them difficult to access, deploy, and secure in many settings. This paper investigates whether small, decoder-only language models can provide an efficient alternative for the tasks of grammar correction and text simplification. The experiments in this paper focus on testing small language models out of the box, fine-tuned, and run sequentially on the JFLEG and ASSET datasets using established metrics. The results show that while SLMs may learn certain behaviors well, their performance remains below strong baselines and current LLMs. The results also show that SLMs struggle with retaining meaning and hallucinations. These findings suggest that despite their efficiency advantages, current SLMs are not yet competitive enough with modern LLMs for rewriting, and further advances in training are required for SLMs to close the performance gap between them and today's LLMs.
- Abstract(参考訳): 大規模言語モデルは、テキスト生成や書き換えなど、さまざまなタスクで強力なパフォーマンスを実現する能力から、最近は非常に人気があるが、そのサイズと計算コストは、多くの設定でアクセス、デプロイ、セキュリティを困難にしている。
本稿では,小型のデコーダのみの言語モデルが文法修正やテキストの簡略化といったタスクに対して,効率的な代替手段となるかどうかを考察する。
本稿では,JFLEG と ASSET のデータセット上で,確立したメトリクスを用いて連続的に動作させる小型言語モデルを最初からテストすることに焦点をあてる。
その結果、SLMは特定の動作をよく学習するが、その性能は強いベースラインと現在のLLM以下であることがわかった。
その結果,SLMは意味や幻覚の保持に苦慮していることが明らかとなった。
これらの結果から, 現在のSLMは, 効率上の優位性にもかかわらず, 現代のLLMと十分に競合していないことが示唆され, それらの性能ギャップを埋めるためには, トレーニングのさらなる進歩が必要である。
関連論文リスト
- Enhancing Code Generation for Low-Resource Languages: No Silver Bullet [55.39571645315926]
大規模言語モデル(LLM)は、プログラミング言語の構文、意味論、使用パターンを学ぶために、大規模で多様なデータセットに依存している。
低リソース言語では、そのようなデータの限られた可用性は、モデルを効果的に一般化する能力を損なう。
本稿では,低リソース言語におけるLLMの性能向上のためのいくつかの手法の有効性を実証研究する。
論文 参考訳(メタデータ) (2025-01-31T12:23:28Z) - Learning to Reduce: Optimal Representations of Structured Data in
Prompting Large Language Models [42.16047343029512]
大規模言語モデル(LLM)は汎用AIエージェントとして広く利用されている。
本稿では,入力コンテキストの縮小バージョンを生成するために,言語モデルを微調整するフレームワークであるLearning to Reduceを提案する。
入力コンテキストから関連する証拠を選択する際に,本モデルが同等の精度を達成することを示す。
論文 参考訳(メタデータ) (2024-02-22T00:41:23Z) - Speech Translation with Large Language Models: An Industrial Practice [64.5419534101104]
LLM-STは,事前学習型大言語モデル(LLM)に基づいて構築された,新規で効果的な音声翻訳モデルである。
大規模言語モデル(LLM)を音声エンコーダと統合し、マルチタスクの命令チューニングを利用することで、LLM-STは正確なタイムスタンプと翻訳を生成することができる。
英語と中国語のデータセットの厳密な実験を通じて,LLM-STの異常な性能を示す。
論文 参考訳(メタデータ) (2023-12-21T05:32:49Z) - LLM-augmented Preference Learning from Natural Language [19.700169351688768]
大規模言語モデル(LLM)は、より大きな文脈長を扱う。
LLM は、ターゲットテキストが大きければ SotA を一貫して上回る。
ゼロショット学習よりもパフォーマンスが向上する。
論文 参考訳(メタデータ) (2023-10-12T17:17:27Z) - Simultaneous Machine Translation with Large Language Models [51.470478122113356]
我々は,SimulMTタスクに大規模言語モデルを適用する可能性を検討する。
MUST-Cデータセットと異なる9言語でtextttLlama2-7b-chatモデルを用いて実験を行った。
その結果,LLM は BLEU と LAAL の指標で専用MT モデルよりも優れていた。
論文 参考訳(メタデータ) (2023-09-13T04:06:47Z) - Small Language Models Improve Giants by Rewriting Their Outputs [18.025736098795296]
本研究では,大規模言語モデル(LLM)の性能向上にトレーニングデータを活用するという課題に,微調整なしで対処する。
我々は、数発のプロンプトによってLSMから候補のプールを作成し、コンパクトモデルLM-corrector(LMCor)を用いて、これらの候補をマージして拡張出力を生成するように特別に訓練した。
4つの自然言語生成タスクの実験により、小さな LMCor モデル (250M) でさえ、LLM (62B) の少数ショット性能を大幅に改善し、マッチングや標準微調整よりも優れることを示した。
論文 参考訳(メタデータ) (2023-05-22T22:07:50Z) - LLM-Pruner: On the Structural Pruning of Large Language Models [65.02607075556742]
大規模言語モデル(LLM)は、言語理解と生成において顕著な能力を示している。
タスク非依存であり、元のトレーニングデータセットへの依存を最小限に抑えるという2つの制約の範囲内でLLMの圧縮に取り組む。
LLM-Prunerという名前のこの手法は、非臨界結合構造を選択的に除去する構造プルーニングを採用する。
論文 参考訳(メタデータ) (2023-05-19T12:10:53Z) - Validating Large Language Models with ReLM [11.552979853457117]
大規模言語モデル(LLM)は、自然に聞こえるテキストを生成する能力があるとして、高く評価されている。
データ記憶、バイアス、不適切な言語など、LLMのネガティブな影響に関する懸念が高まっている。
本稿では,標準正規表現を用いたLLMの検証・クエリシステムであるReLMを紹介する。
論文 参考訳(メタデータ) (2022-11-21T21:40:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。