論文の概要: A low-complexity method for efficient depth-guided image deblurring
- arxiv url: http://arxiv.org/abs/2601.03924v1
- Date: Wed, 07 Jan 2026 13:45:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-09 02:15:23.571778
- Title: A low-complexity method for efficient depth-guided image deblurring
- Title(参考訳): 深度誘導画像の高分解能化のための低分解能化法
- Authors: Ziyao Yi, Diego Valsesia, Tiziano Bianchi, Enrico Magli,
- Abstract要約: 本稿では,深度誘導画像分解のための新しい低複雑さニューラルネットワークを提案する。
我々は,ウェーブレット変換を用いて構造的詳細を分離し,空間冗長性を低減し,深度情報に基づく効率的な特徴条件付けが,低複雑さモデルの開発に不可欠であることを示す。
- 参考スコア(独自算出の注目度): 17.52972152735283
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Image deblurring is a challenging problem in imaging due to its highly ill-posed nature. Deep learning models have shown great success in tackling this problem but the quest for the best image quality has brought their computational complexity up, making them impractical on anything but powerful servers. Meanwhile, recent works have shown that mobile Lidars can provide complementary information in the form of depth maps that enhance deblurring quality. In this paper, we introduce a novel low-complexity neural network for depth-guided image deblurring. We show that the use of the wavelet transform to separate structural details and reduce spatial redundancy as well as efficient feature conditioning on the depth information are essential ingredients in developing a low-complexity model. Experimental results show competitive image quality against recent state-of-the-art models while reducing complexity by up to two orders of magnitude.
- Abstract(参考訳): 画像の劣化は、非常に不適切な性質のため、画像の撮影において難しい問題である。
ディープラーニングモデルはこの問題に対処する上で大きな成功を収めていますが、最高の画像品質を求めることで、計算の複雑さが向上し、強力なサーバ以外のものには実用的ではありません。
一方、近年の研究では、モバイルLidarsは、劣化品質を高めるための深度マップの形で補完的な情報を提供できることが示されている。
本稿では,深度誘導画像分解のための新しい低複雑さニューラルネットワークを提案する。
我々は,ウェーブレット変換を用いて構造的詳細を分離し,空間冗長性を低減し,深度情報に基づく効率的な特徴条件付けが,低複雑さモデルの開発に不可欠であることを示す。
実験により,最近の最先端モデルと競合する画像品質を示すとともに,複雑性を最大2桁まで低減した。
関連論文リスト
- UltraPixel: Advancing Ultra-High-Resolution Image Synthesis to New Peaks [36.61645124563195]
カスケード拡散モデルを用いて高画質画像を複数解像度で生成する新しいアーキテクチャであるUltraPixelを提案する。
後半の認知段階における低分解能画像のセマンティクスに富んだ表現を用いて、高精細高分解能画像の全生成を導く。
我々のモデルは、データ要求を減らして高速なトレーニングを行い、フォトリアリスティックな高解像度画像を生成する。
論文 参考訳(メタデータ) (2024-07-02T11:02:19Z) - Distance Weighted Trans Network for Image Completion [52.318730994423106]
本稿では,DWT(Distance-based Weighted Transformer)を利用した画像コンポーネント間の関係をよりよく理解するためのアーキテクチャを提案する。
CNNは、粗い事前の局所的なテクスチャ情報を強化するために使用される。
DWTブロックは、特定の粗いテクスチャやコヒーレントな視覚構造を復元するために使用される。
論文 参考訳(メタデータ) (2023-10-11T12:46:11Z) - RigNet++: Semantic Assisted Repetitive Image Guided Network for Depth
Completion [31.70022495622075]
画像案内ネットワークにおける繰り返し設計を探索し、徐々に十分に深度を復元する。
前者では,複雑な環境の識別画像の特徴を抽出するために,高密度繰り返し時間ガラスネットワーク(DRHN)を設計する。
後者では,動的畳み込みに基づく反復誘導(RG)モジュールを提案する。
さらに,領域認識型空間伝搬ネットワーク(RASPN)を提案する。
論文 参考訳(メタデータ) (2023-09-01T09:11:20Z) - Searching a Compact Architecture for Robust Multi-Exposure Image Fusion [55.37210629454589]
2つの大きなスタブリングブロックは、画素の不一致や非効率な推論など、開発を妨げる。
本研究では,高機能なマルチ露光画像融合のための自己アライメントとディテールリプレクションモジュールを取り入れたアーキテクチャ検索に基づくパラダイムを提案する。
提案手法は様々な競争方式より優れており、一般的なシナリオではPSNRが3.19%向上し、不整合シナリオでは23.5%向上した。
論文 参考訳(メタデータ) (2023-05-20T17:01:52Z) - LR-Net: A Block-based Convolutional Neural Network for Low-Resolution
Image Classification [0.0]
ノイズや低解像度の画像から低レベル特徴と大域特徴の両方を学習するためのブロックで構成された,新しい画像分類アーキテクチャを開発した。
ブロックの設計は,性能向上とパラメータサイズ削減のために,Residual ConnectionとInceptionモジュールの影響を強く受けていた。
我々は、提示されたアーキテクチャが既存の最先端畳み込みニューラルネットワークよりも高速で正確であることを示す詳細なテストを実施した。
論文 参考訳(メタデータ) (2022-07-19T20:01:11Z) - Pixel Distillation: A New Knowledge Distillation Scheme for Low-Resolution Image Recognition [124.80263629921498]
アーキテクチャ制約を同時に破りながら知識蒸留を入力レベルまで拡張するPixel Distillationを提案する。
このようなスキームは、ネットワークアーキテクチャと画像品質の両方をリソースの全体的な要求に応じて調整できるため、展開のための柔軟なコスト制御を実現することができる。
論文 参考訳(メタデータ) (2021-12-17T14:31:40Z) - Multi Scale Identity-Preserving Image-to-Image Translation Network for
Low-Resolution Face Recognition [7.6702700993064115]
本稿では,画像から画像へ変換する深層ニューラルネットワークを提案する。
アイデンティティ関連の情報を保存しながら、非常に低解像度の顔を高解像度の顔に超解き放つことができる。
論文 参考訳(メタデータ) (2020-10-23T09:21:06Z) - Invertible Image Rescaling [118.2653765756915]
Invertible Rescaling Net (IRN) を開発した。
我々は、ダウンスケーリングプロセスにおいて、指定された分布に従う潜在変数を用いて、失われた情報の分布をキャプチャする。
論文 参考訳(メタデータ) (2020-05-12T09:55:53Z) - Learning Enriched Features for Real Image Restoration and Enhancement [166.17296369600774]
畳み込みニューラルネットワーク(CNN)は、画像復元作業における従来のアプローチよりも劇的に改善されている。
ネットワーク全体を通して空間的精度の高い高解像度表現を維持することを目的とした,新しいアーキテクチャを提案する。
提案手法は,高解像度の空間的詳細を同時に保存しながら,複数のスケールからの文脈情報を組み合わせた豊富な特徴集合を学習する。
論文 参考訳(メタデータ) (2020-03-15T11:04:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。