論文の概要: LR-Net: A Block-based Convolutional Neural Network for Low-Resolution
Image Classification
- arxiv url: http://arxiv.org/abs/2207.09531v5
- Date: Sun, 28 May 2023 20:59:42 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-31 03:49:12.701350
- Title: LR-Net: A Block-based Convolutional Neural Network for Low-Resolution
Image Classification
- Title(参考訳): LR-Net:低解像度画像分類のためのブロックベース畳み込みニューラルネットワーク
- Authors: Ashkan Ganj, Mohsen Ebadpour, Mahdi Darvish, Hamid Bahador
- Abstract要約: ノイズや低解像度の画像から低レベル特徴と大域特徴の両方を学習するためのブロックで構成された,新しい画像分類アーキテクチャを開発した。
ブロックの設計は,性能向上とパラメータサイズ削減のために,Residual ConnectionとInceptionモジュールの影響を強く受けていた。
我々は、提示されたアーキテクチャが既存の最先端畳み込みニューラルネットワークよりも高速で正確であることを示す詳細なテストを実施した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The success of CNN-based architecture on image classification in learning and
extracting features made them so popular these days, but the task of image
classification becomes more challenging when we apply state of art models to
classify noisy and low-quality images. It is still difficult for models to
extract meaningful features from this type of image due to its low-resolution
and the lack of meaningful global features. Moreover, high-resolution images
need more layers to train which means they take more time and computational
power to train. Our method also addresses the problem of vanishing gradients as
the layers become deeper in deep neural networks that we mentioned earlier. In
order to address all these issues, we developed a novel image classification
architecture, composed of blocks that are designed to learn both low level and
global features from blurred and noisy low-resolution images. Our design of the
blocks was heavily influenced by Residual Connections and Inception modules in
order to increase performance and reduce parameter sizes. We also assess our
work using the MNIST family datasets, with a particular emphasis on the
Oracle-MNIST dataset, which is the most difficult to classify due to its
low-quality and noisy images. We have performed in-depth tests that demonstrate
the presented architecture is faster and more accurate than existing
cutting-edge convolutional neural networks. Furthermore, due to the unique
properties of our model, it can produce a better result with fewer parameters.
- Abstract(参考訳): 近年,CNNによる画像分類と特徴抽出の成功により,画像分類が盛んになったが,ノイズや低品質の画像の分類に芸術モデルの状況を適用すると,画像分類の課題がより困難になる。
モデルがこのタイプの画像から有意義な特徴を抽出することは、その低解像度と有意義なグローバルな特徴の欠如のため、依然として困難である。
さらに、高解像度画像はトレーニングにより多くのレイヤーを必要とするため、トレーニングにより多くの時間と計算能力を要する。
また,前述した深層ニューラルネットワークでは,層がより深くなり,勾配が消失する問題にも対処している。
これらの問題すべてに対処するため,我々は,低レベルとグローバル両方の特徴を,ぼやけた低解像度画像から学習するために設計された,新しい画像分類アーキテクチャを開発した。
ブロックの設計は,性能向上とパラメータサイズ削減のために,Residual ConnectionとInceptionモジュールの影響を強く受けていた。
私たちはまた、MNISTファミリデータセットを使用して、Oracle-MNISTデータセットに特に重点を置いて、私たちの作業を評価します。
提案するアーキテクチャが既存の最先端畳み込みニューラルネットワークよりも高速かつ正確であることを実証する詳細なテストを実施した。
さらに,モデルのユニークな特性から,パラメータの少ない方がよい結果が得られる。
関連論文リスト
- Research on Image Super-Resolution Reconstruction Mechanism based on Convolutional Neural Network [8.739451985459638]
超解像アルゴリズムは、同一シーンから撮影された1つ以上の低解像度画像を高解像度画像に変換する。
再構成過程における画像の特徴抽出と非線形マッピング手法は,既存のアルゴリズムでは依然として困難である。
目的は、高解像度の画像から高品質で高解像度の画像を復元することである。
論文 参考訳(メタデータ) (2024-07-18T06:50:39Z) - Distance Weighted Trans Network for Image Completion [52.318730994423106]
本稿では,DWT(Distance-based Weighted Transformer)を利用した画像コンポーネント間の関係をよりよく理解するためのアーキテクチャを提案する。
CNNは、粗い事前の局所的なテクスチャ情報を強化するために使用される。
DWTブロックは、特定の粗いテクスチャやコヒーレントな視覚構造を復元するために使用される。
論文 参考訳(メタデータ) (2023-10-11T12:46:11Z) - T-former: An Efficient Transformer for Image Inpainting [50.43302925662507]
トランスフォーマーと呼ばれる注目に基づくネットワークアーキテクチャのクラスは、自然言語処理の分野で大きなパフォーマンスを示している。
本稿では,Taylorの展開に応じて,解像度に線形に関連付けられた新たな注意を設計し,この注意に基づいて,画像インペイントのためのネットワークである$T$-formerを設計する。
いくつかのベンチマークデータセットの実験により,提案手法は比較的少ないパラメータ数と計算複雑性を維持しつつ,最先端の精度を達成できることが示されている。
論文 参考訳(メタデータ) (2023-05-12T04:10:42Z) - CEC-CNN: A Consecutive Expansion-Contraction Convolutional Network for
Very Small Resolution Medical Image Classification [0.8108972030676009]
深層・中層・浅層からのマルチスケール特徴を保存できる新しいCNNアーキテクチャを提案する。
膵管腺癌(PDAC)CTの超低解像度パッチのデータセットを用いて,我々のネットワークが最先端のアートモデルより優れていることを示す。
論文 参考訳(メタデータ) (2022-09-27T20:01:12Z) - Learning Enriched Features for Fast Image Restoration and Enhancement [166.17296369600774]
本稿では,ネットワーク全体を通して空間的精度の高い高解像度表現を維持することを目的とする。
我々は、高解像度の空間的詳細を同時に保存しながら、複数のスケールからの文脈情報を組み合わせた豊富な特徴集合を学習する。
提案手法は,デフォーカス・デブロアリング,画像デノイング,超解像,画像強調など,さまざまな画像処理タスクに対して,最先端の処理結果を実現する。
論文 参考訳(メタデータ) (2022-04-19T17:59:45Z) - Restormer: Efficient Transformer for High-Resolution Image Restoration [118.9617735769827]
畳み込みニューラルネットワーク(CNN)は、大規模データから一般化可能な画像の事前学習をうまく行う。
トランスフォーマーは、自然言語とハイレベルな視覚タスクにおいて、顕著なパフォーマンス向上を示している。
我々のモデルであるRecovery Transformer (Restormer) は、いくつかの画像復元タスクにおいて最先端の結果を得る。
論文 参考訳(メタデータ) (2021-11-18T18:59:10Z) - The Mind's Eye: Visualizing Class-Agnostic Features of CNNs [92.39082696657874]
本稿では,特定のレイヤの最も情報性の高い特徴を表現した対応する画像を作成することにより,画像の集合を視覚的に解釈する手法を提案する。
本手法では, 生成ネットワークを必要とせず, 元のモデルに変更を加えることなく, デュアルオブジェクトのアクティベーションと距離損失を利用する。
論文 参考訳(メタデータ) (2021-01-29T07:46:39Z) - An Evolution of CNN Object Classifiers on Low-Resolution Images [0.4129225533930965]
低画質画像からのオブジェクト分類は、対象色、アスペクト比、乱れ背景のばらつきに対して困難である。
深層畳み込みニューラルネットワーク(DCNN)は、高解像度画像からオブジェクト分類の課題に直面する非常に強力なシステムとして実証されています。
本稿では,DCNNアーキテクチャを用いて低品質画像を正確に分類する最適アーキテクチャについて検討する。
論文 参考訳(メタデータ) (2021-01-03T18:44:23Z) - Lightweight Modules for Efficient Deep Learning based Image Restoration [20.701733377216932]
そこで我々は,与えられたベースラインモデルの計算的低コストな変種を生成するために,いくつかの軽量な低レベルモジュールを提案する。
その結果,提案するネットワークは,全容量ベースラインと比較して,視覚的に類似した再構成を一貫して出力することがわかった。
論文 参考訳(メタデータ) (2020-07-11T19:35:00Z) - Learning Enriched Features for Real Image Restoration and Enhancement [166.17296369600774]
畳み込みニューラルネットワーク(CNN)は、画像復元作業における従来のアプローチよりも劇的に改善されている。
ネットワーク全体を通して空間的精度の高い高解像度表現を維持することを目的とした,新しいアーキテクチャを提案する。
提案手法は,高解像度の空間的詳細を同時に保存しながら,複数のスケールからの文脈情報を組み合わせた豊富な特徴集合を学習する。
論文 参考訳(メタデータ) (2020-03-15T11:04:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。