論文の概要: Explainable Admission-Level Predictive Modeling for Prolonged Hospital Stay in Elderly Populations: Challenges in Low- and Middle-Income Countries
- arxiv url: http://arxiv.org/abs/2601.04449v1
- Date: Wed, 07 Jan 2026 23:35:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-09 17:01:52.956647
- Title: Explainable Admission-Level Predictive Modeling for Prolonged Hospital Stay in Elderly Populations: Challenges in Low- and Middle-Income Countries
- Title(参考訳): 低所得国と中所得国における長期入院病院の適応レベル予測モデル
- Authors: Daniel Sierra-Botero, Ana Molina-Taborda, Leonardo Espinosa-Leal, Alexander Karpenko, Alejandro Hernandez, Olga Lopez-Acevedo,
- Abstract要約: 長期滞在期間 (pLoS) は, 院内感染のリスクに関連する重要な要因である。
入院レベルの患者と病院の診療データを用いて, pLosの予測モデルを開発し, 解説する。
- 参考スコア(独自算出の注目度): 65.4286079244589
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Prolonged length of stay (pLoS) is a significant factor associated with the risk of adverse in-hospital events. We develop and explain a predictive model for pLos using admission-level patient and hospital administrative data. The approach includes a feature selection method by selecting non-correlated features with the highest information value. The method uses features weights of evidence to select a representative within cliques from graph theory. The prognosis study analyzed the records from 120,354 hospital admissions at the Hospital Alma Mater de Antioquia between January 2017 and March 2022. After a cleaning process the dataset was split into training (67%), test (22%), and validation (11%) cohorts. A logistic regression model was trained to predict the pLoS in two classes: less than or greater than 7 days. The performance of the model was evaluated using accuracy, precision, sensitivity, specificity, and AUC-ROC metrics. The feature selection method returns nine interpretable variables, enhancing the models' transparency. In the validation cohort, the pLoS model achieved a specificity of 0.83 (95% CI, 0.82-0.84), sensitivity of 0.64 (95% CI, 0.62-0.65), accuracy of 0.76 (95% CI, 0.76-0.77), precision of 0.67 (95% CI, 0.66-0.69), and AUC-ROC of 0.82 (95% CI, 0.81-0.83). The model exhibits strong predictive performance and offers insights into the factors that influence prolonged hospital stays. This makes it a valuable tool for hospital management and for developing future intervention studies aimed at reducing pLoS.
- Abstract(参考訳): 長期滞在期間 (pLoS) は, 院内感染のリスクに関連する重要な要因である。
入院レベルの患者と病院の診療データを用いて,pLosの予測モデルを開発し,説明する。
このアプローチは、最も高い情報値を持つ非関連特徴を選択することで特徴選択方法を含む。
この方法は、グラフ理論から斜め内の代表を選ぶために、証拠の重みを利用する。
2017年1月から2022年3月までにアルマ・マテル・デ・アンティオキア病院で120,354件の入院記録を分析した。
クリーニングプロセスの後、データセットはトレーニング(67%)、テスト(22%)、検証(11%)のコホートに分割された。
ロジスティック回帰モデルを用いて,pLoSを2つのクラス(7日以下)で予測した。
モデルの性能は,精度,精度,感度,特異度,AUC-ROC測定値を用いて評価した。
特徴選択法は9つの解釈可能な変数を返し、モデルの透明性を高める。
検証コホートでは、pLoSモデルは0.83(95% CI, 0.82-0.84)、感度0.64(95% CI, 0.62-0.65)、精度0.76(95% CI, 0.76-0.77)、精度0.67(95% CI, 0.66-0.69)、AUC-ROC(95% CI, 0.81-0.83)を達成した。
このモデルは高い予測性能を示し、長期入院に影響する要因についての洞察を提供する。
これにより、病院管理や、pLoS削減を目的とした将来の介入研究に有用なツールとなる。
関連論文リスト
- Automatic Cough Analysis for Non-Small Cell Lung Cancer Detection [33.37223681850477]
非小細胞肺癌(NSCLC)の早期発見は患者の予後改善に重要である。
本研究では,NSCLC患者と健常者との鑑別のためのスクリーニングツールとして,自動コークス分析の利用について検討する。
記録は、サポートベクタマシン(SVM)やXGBoostといった機械学習技術を用いて分析された。
論文 参考訳(メタデータ) (2025-07-25T11:30:22Z) - A SHAP-based explainable multi-level stacking ensemble learning method for predicting the length of stay in acute stroke [3.2906073576204955]
既存の機械学習モデルは、最適以下の予測性能、限定的な一般化可能性を示し、システムレベルの要因を見落としている。
我々は,虚血性脳梗塞と出血性脳梗塞に対する解釈可能な多段階重ねアンサンブルモデルを開発した。
説明可能なアンサンブルモデルは,虚血性脳卒中におけるLOSの延長を効果的に予測する。
出血性脳卒中にはさらなる検証が必要である。
論文 参考訳(メタデータ) (2025-05-30T01:08:26Z) - Predicting Length of Stay in Neurological ICU Patients Using Classical Machine Learning and Neural Network Models: A Benchmark Study on MIMIC-IV [49.1574468325115]
本研究は、MIMIC-IVデータセットに基づく神経疾患患者を対象とした、ICUにおけるLOS予測のための複数のMLアプローチについて検討する。
評価されたモデルには、古典的MLアルゴリズム(K-Nearest Neighbors、Random Forest、XGBoost、CatBoost)とニューラルネットワーク(LSTM、BERT、テンポラルフュージョントランス)が含まれる。
論文 参考訳(メタデータ) (2025-05-23T14:06:42Z) - Equitable Length of Stay Prediction for Patients with Learning Disabilities and Multiple Long-term Conditions Using Machine Learning [1.0064817439176887]
本研究は,学習障害患者9,618例の入院状況とウェールズの人口の長期的状況について分析した。
調査コホートでは, 人口動態, 長期経過状況, 薬剤歴, 病院訪問, 生活史について検討した。
我々は,このコホートにおける入院期間を予測するために,機械学習モデルを適用した。
論文 参考訳(メタデータ) (2024-11-03T20:14:20Z) - Advanced Predictive Modeling for Enhanced Mortality Prediction in ICU Stroke Patients Using Clinical Data [0.0]
ストロークは成人の障害と死亡の第二の要因である。
毎年1700万人が脳卒中を患っており、約85%が虚血性脳卒中である。
我々は、死亡リスクを評価するためのディープラーニングモデルを開発し、比較のためにいくつかのベースライン機械学習モデルを実装した。
論文 参考訳(メタデータ) (2024-07-19T11:17:42Z) - Machine Learning for ALSFRS-R Score Prediction: Making Sense of the Sensor Data [44.99833362998488]
筋萎縮性側索硬化症(Amyotrophic Lateral Sclerosis、ALS)は、急速に進行する神経変性疾患である。
iDPP@CLEF 2024チャレンジを先導した今回の調査は,アプリから得られるセンサデータを活用することに焦点を当てている。
論文 参考訳(メタデータ) (2024-07-10T19:17:23Z) - On the explainability of hospitalization prediction on a large COVID-19
patient dataset [45.82374977939355]
我々は、新型コロナウイルス陽性の米国の患者の大規模な(110ドル以上)コホートでの入院を予測するために、さまざまなAIモデルを開発した。
高いデータアンバランスにもかかわらず、モデルは平均精度0.96-0.98 (0.75-0.85)、リコール0.96-0.98 (0.74-0.85)、F_score097-0.98 (0.79-0.83)に達する。
論文 参考訳(メタデータ) (2021-10-28T10:23:38Z) - COVID-19 Prognosis via Self-Supervised Representation Learning and
Multi-Image Prediction [32.91440827855392]
胸部X線に基づいて2種類の患者の劣化を予測するタスクを検討する。
新型コロナウイルス(covid-19)患者のデータが少ないため、既存のソリューションは、関連しない画像で教師付き事前トレーニングを利用する。
本論文では,前訓練段階における運動量コントラスト(MoCo)法に基づく自己監督学習を用いて,下流タスクに用いる一般的な画像表現を学習する。
論文 参考訳(メタデータ) (2021-01-13T07:03:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。