論文の概要: A SHAP-based explainable multi-level stacking ensemble learning method for predicting the length of stay in acute stroke
- arxiv url: http://arxiv.org/abs/2505.24101v2
- Date: Mon, 16 Jun 2025 05:45:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-17 15:15:31.389247
- Title: A SHAP-based explainable multi-level stacking ensemble learning method for predicting the length of stay in acute stroke
- Title(参考訳): SHAPを用いたマルチレベル累積アンサンブル学習法による急性脳卒中における留置期間の予測
- Authors: Zhenran Xu,
- Abstract要約: 既存の機械学習モデルは、最適以下の予測性能、限定的な一般化可能性を示し、システムレベルの要因を見落としている。
我々は,虚血性脳梗塞と出血性脳梗塞に対する解釈可能な多段階重ねアンサンブルモデルを開発した。
説明可能なアンサンブルモデルは,虚血性脳卒中におけるLOSの延長を効果的に予測する。
出血性脳卒中にはさらなる検証が必要である。
- 参考スコア(独自算出の注目度): 3.2906073576204955
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Length of stay (LOS) prediction in acute stroke is critical for improving care planning. Existing machine learning models have shown suboptimal predictive performance, limited generalisability, and have overlooked system-level factors. We aimed to enhance model efficiency, performance, and interpretability by refining predictors and developing an interpretable multi-level stacking ensemble model. Data were accessed from the biennial Stroke Foundation Acute Audit (2015, 2017, 2019, 2021) in Australia. Models were developed for ischaemic and haemorrhagic stroke separately. The outcome was prolonged LOS (the LOS above the 75th percentile). Candidate predictors (ischaemic: n=89; haemorrhagic: n=83) were categorised into patient, clinical, and system domains. Feature selection with correlation-based approaches was used to refine key predictors. The evaluation of models included discrimination (AUC), calibration curves, and interpretability (SHAP plots). In ischaemic stroke (N=12,575), prolonged LOS was >=9 days, compared to >=11 days in haemorrhagic stroke (N=1,970). The ensemble model achieved superior performance [AUC: 0.824 (95% CI: 0.801-0.846)] and statistically outperformed logistic regression [AUC: 0.805 (95% CI: 0.782-0.829); P=0.0004] for ischaemic. However, the model [AUC: 0.843 (95% CI: 0.790-0.895)] did not statistically outperform logistic regression [AUC: 0.828 (95% CI: 0.774-0.882); P=0.136] for haemorrhagic. SHAP analysis identified shared predictors for both types of stroke: rehabilitation assessment, urinary incontinence, stroke unit care, inability to walk independently, physiotherapy, and stroke care coordinators involvement. An explainable ensemble model effectively predicted the prolonged LOS in ischaemic stroke. Further validation in larger cohorts is needed for haemorrhagic stroke.
- Abstract(参考訳): 急性期脳卒中における長期滞在(LOS)予測は,介護計画の改善に不可欠である。
既存の機械学習モデルは、最適以下の予測性能、限定的な一般化可能性を示し、システムレベルの要因を見落としている。
本研究では,予測器を改良し,解釈可能なマルチレベル累積アンサンブルモデルを開発することにより,モデル効率,性能,解釈可能性を向上させることを目的とした。
2015年、オーストラリアでStroke Foundation acute Audit(2015年、2017年、2019年、2021年)からデータにアクセスされた。
虚血性脳梗塞と出血性脳梗塞は別々に開発された。
結果はLOS(75パーセント以上のLOS)に延長された。
候補予測因子は, 患者, 臨床, システムドメインに分類した。
相関に基づくアプローチによる特徴選択は、キー予測を洗練するために用いられた。
モデルの評価には、識別(AUC)、校正曲線、解釈可能性(SHAPプロット)が含まれる。
虚血性脳梗塞 (N=12,575), 長期LOSは9日, 出血性脳梗塞 (N=1,970) は11日であった。
AUC: 0.824 (95% CI: 0.801-0.846) と統計的に上回るロジスティック回帰 (AUC: 0.805 (95% CI: 0.782-0.829); P=0.0004] を等長値として達成した。
しかし, [AUC: 0.843 (95% CI: 0.790-0.895)] は出血に対するロジスティック回帰 (AUC: 0.828 (95% CI: 0.774-0.882); P=0.136) を統計的に上回らなかった。
SHAP分析では、リハビリテーションアセスメント、尿失禁、脳卒中単位ケア、独立した歩行能力の欠如、理学療法、脳卒中ケアコーディネーターの関与の2種類の脳卒中予測因子を同定した。
説明可能なアンサンブルモデルは,虚血性脳卒中におけるLOSの延長を効果的に予測する。
出血性脳卒中には、より大きなコホートのさらなる検証が必要である。
関連論文リスト
- Predicting Length of Stay in Neurological ICU Patients Using Classical Machine Learning and Neural Network Models: A Benchmark Study on MIMIC-IV [49.1574468325115]
本研究は、MIMIC-IVデータセットに基づく神経疾患患者を対象とした、ICUにおけるLOS予測のための複数のMLアプローチについて検討する。
評価されたモデルには、古典的MLアルゴリズム(K-Nearest Neighbors、Random Forest、XGBoost、CatBoost)とニューラルネットワーク(LSTM、BERT、テンポラルフュージョントランス)が含まれる。
論文 参考訳(メタデータ) (2025-05-23T14:06:42Z) - Machine Learning-Based Model for Postoperative Stroke Prediction in Coronary Artery Disease [0.0]
本研究では,術後脳卒中リスクを評価するための高度な機械学習予測モデルを開発し,評価することを目的とする。
データセットには70%のトレーニングと30%のテストがあり、数値は正規化され、カテゴリ変数は1ホットエンコードされた。
ロジスティック回帰、XGBoost、SVM、CatBoostは予測モデルに使われ、SHAP分析は各変数のストロークリスクを評価した。
論文 参考訳(メタデータ) (2025-03-15T02:50:32Z) - Leveraging Large Language Models to Enhance Machine Learning Interpretability and Predictive Performance: A Case Study on Emergency Department Returns for Mental Health Patients [2.3769374446083735]
救急部門(ED)は精神状態の回復が大きな医療負担となり、患者の24-27%が30日以内に帰国する。
大規模言語モデル(LLM)と機械学習を統合することにより、EDメンタルヘルスリターンリスクモデルの予測精度と臨床的解釈性が向上するか否かを評価する。
論文 参考訳(メタデータ) (2025-01-21T15:41:20Z) - Advanced Meta-Ensemble Machine Learning Models for Early and Accurate Sepsis Prediction to Improve Patient Outcomes [0.0]
本報告では, 全身性炎症性反応症候群, 早期警戒スコア, クイックシークエンシャル臓器不全評価など, 従来の敗血症スクリーニングツールの限界について検討する。
本稿では,機械学習技術 - ランダムフォレスト, エクストリームグラディエントブースティング, 決定木モデル - を用いて, セプシスの発症を予測することを提案する。
本研究は,これらのモデルについて,精度,精度,リコール,F1スコア,受信器動作特性曲線の下での領域といった重要な指標を用いて,個別かつ組み合わせたメタアンサンブルアプローチで評価する。
論文 参考訳(メタデータ) (2024-07-11T00:51:32Z) - Using Pre-training and Interaction Modeling for ancestry-specific disease prediction in UK Biobank [69.90493129893112]
近年のゲノムワイド・アソシエーション(GWAS)研究は、複雑な形質の遺伝的基盤を明らかにしているが、非ヨーロッパ系個体の低発現を示している。
そこで本研究では,マルチオミクスデータを用いて,多様な祖先間での疾患予測を改善することができるかを評価する。
論文 参考訳(メタデータ) (2024-04-26T16:39:50Z) - Clinical Deterioration Prediction in Brazilian Hospitals Based on
Artificial Neural Networks and Tree Decision Models [56.93322937189087]
超強化ニューラルネットワーク(XBNet)は臨床劣化(CD)を予測するために用いられる
XGBoostモデルはブラジルの病院のデータからCDを予測する最良の結果を得た。
論文 参考訳(メタデータ) (2022-12-17T23:29:14Z) - On the explainability of hospitalization prediction on a large COVID-19
patient dataset [45.82374977939355]
我々は、新型コロナウイルス陽性の米国の患者の大規模な(110ドル以上)コホートでの入院を予測するために、さまざまなAIモデルを開発した。
高いデータアンバランスにもかかわらず、モデルは平均精度0.96-0.98 (0.75-0.85)、リコール0.96-0.98 (0.74-0.85)、F_score097-0.98 (0.79-0.83)に達する。
論文 参考訳(メタデータ) (2021-10-28T10:23:38Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
本稿では,新しいコントラスト型正規化臨床分類モデルを提案する。
EHRデータに特化した2つのユニークなポジティブサンプリング戦略を紹介します。
私たちのフレームワークは、現実世界のCOVID-19 EHRデータの死亡リスクを予測するために、競争の激しい実験結果をもたらします。
論文 参考訳(メタデータ) (2021-04-07T06:02:04Z) - Increasing the efficiency of randomized trial estimates via linear
adjustment for a prognostic score [59.75318183140857]
ランダム化実験による因果効果の推定は臨床研究の中心である。
歴史的借用法のほとんどは、厳格なタイプiエラー率制御を犠牲にして分散の削減を達成する。
論文 参考訳(メタデータ) (2020-12-17T21:10:10Z) - A Knowledge Distillation Ensemble Framework for Predicting Short and
Long-term Hospitalisation Outcomes from Electronic Health Records Data [5.844828229178025]
既存の結果予測モデルは、頻繁なポジティブな結果の低いリコールに悩まされる。
我々は、死亡率とICUの受け入れによって表される逆さを自動的に予測する、高度にスケーリング可能な、堅牢な機械学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-11-18T15:56:28Z) - A Physiology-Driven Computational Model for Post-Cardiac Arrest Outcome
Prediction [0.7930054475711718]
本研究の目的は,CA後の結果を予測する計算モデルを構築することである。
我々は、生理的時系列(PTS)データの統合と機械学習(ML)分類器の訓練によりモデル性能を向上させることができると仮定した。
その結果, MLモデルによるCA後予測モデルの有効性が証明され, PTSが短期成績確率を符号化した後のごく初期段階に記録されることが示唆された。
論文 参考訳(メタデータ) (2020-02-09T07:53:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。