論文の概要: Adversarial Yet Cooperative: Multi-Perspective Reasoning in Retrieved-Augmented Language Models
- arxiv url: http://arxiv.org/abs/2601.04651v1
- Date: Thu, 08 Jan 2026 06:57:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-09 17:01:53.070906
- Title: Adversarial Yet Cooperative: Multi-Perspective Reasoning in Retrieved-Augmented Language Models
- Title(参考訳): 対人協調:検索言語モデルにおける多視点推論
- Authors: Can Xu, Lingyong Yan, Jiayi Wu, Haosen Wang, Shuaiqiang Wang, Yuchen Li, Jizhou Huang, Dawei Yin, Xiang Li,
- Abstract要約: 本稿ではAdrialversa Reasoning RAG(ARR)というReasoner-Verifierフレームワークを提案する。
ReasonerとVerifierは、回収された証拠を推論し、プロセス認識の利点によってガイドされながら、互いの論理を批判する。
複数のベンチマーク実験により,本手法の有効性が示された。
- 参考スコア(独自算出の注目度): 72.4149653187766
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Recent advances in synergizing large reasoning models (LRMs) with retrieval-augmented generation (RAG) have shown promising results, yet two critical challenges remain: (1) reasoning models typically operate from a single, unchallenged perspective, limiting their ability to conduct deep, self-correcting reasoning over external documents, and (2) existing training paradigms rely excessively on outcome-oriented rewards, which provide insufficient signal for shaping the complex, multi-step reasoning process. To address these issues, we propose an Reasoner-Verifier framework named Adversarial Reasoning RAG (ARR). The Reasoner and Verifier engage in reasoning on retrieved evidence and critiquing each other's logic while being guided by process-aware advantage that requires no external scoring model. This reward combines explicit observational signals with internal model uncertainty to jointly optimize reasoning fidelity and verification rigor. Experiments on multiple benchmarks demonstrate the effectiveness of our method.
- Abstract(参考訳): 大規模推論モデル (LRM) と検索強化世代 (RAG) の相乗化の最近の進歩は有望な結果を示しているが,(1) 推論モデルが単一かつ無意味な視点から通常動作し,外部文書よりも深い自己補正推論を行う能力を制限すること,(2) 既存の訓練パラダイムは結果指向の報酬に過度に依存しており,複雑な多段階推論プロセスを形成するのに不十分な信号を提供すること,の2つの重要な課題が残っている。
これらの問題に対処するため,Adversarial Reasoning RAG (ARR) というReasoner-Verifierフレームワークを提案する。
ReasonerとVerifierは、抽出された証拠を推論し、外部のスコアリングモデルを必要としないプロセス認識の利点によって導かれながら、互いの論理を批判する。
この報酬は、明確な観測信号と内部モデルの不確実性を組み合わせることで、推論の忠実さと検証の厳密さを共同で最適化する。
複数のベンチマーク実験により,本手法の有効性が示された。
関連論文リスト
- Analyzing Reasoning Consistency in Large Multimodal Models under Cross-Modal Conflicts [74.47786985522762]
テキスト慣性(textual inertia)と呼ばれる重要な障害モードを特定し、矛盾する視覚的証拠を無視しながら、モデルは間違ったテキストに盲目的に固執する傾向がある。
本稿では,多種多様なLMMの推論連鎖に摂動を構造的に注入するLogicGraph摂動プロトコルを提案する。
その結果,10%未満の症例で自己修正が成功し,主に視覚的テキスト誤りの伝播に寄与することが判明した。
論文 参考訳(メタデータ) (2026-01-07T16:39:34Z) - Abductive Inference in Retrieval-Augmented Language Models: Generating and Validating Missing Premises [0.0]
本稿では,帰納的推論をLLMに組み込むフレームワークを提案する。
帰納的推論とマルチホップQAベンチマークの実験結果から,本手法は解答精度と帰納的忠実度の両方を改善することが示された。
この研究は、RAGシステムの堅牢性と説明可能性を高めるための有望な方向として、帰納的推論を強調している。
論文 参考訳(メタデータ) (2025-11-06T03:37:24Z) - ROVER: Benchmarking Reciprocal Cross-Modal Reasoning for Omnimodal Generation [79.17352367219736]
ROVERは1つのモダリティを使用して、もう1つの出力を誘導、検証、精査する。
ROVERは、相互モーダルな推論を明示的にターゲットとする、人間による注釈付きベンチマークである。
論文 参考訳(メタデータ) (2025-11-03T02:27:46Z) - VAR: Visual Attention Reasoning via Structured Search and Backtracking [49.427842994857635]
構造化された検索としてグラウンドド推論をリキャストするフレームワークであるVisual Attention Reasoningを紹介する。
VARは、推論プロセスを2つの重要な段階に分解する。
我々は、我々の7BモデルであるVAR-7Bが、幻覚と安全性のベンチマークの包括的なスイートに新しい最先端を設定していることを示します。
論文 参考訳(メタデータ) (2025-10-21T13:18:44Z) - Don't Overthink It: A Survey of Efficient R1-style Large Reasoning Models [49.598776427454176]
大規模共振モデル (LRM) は, 複雑なタスクの処理性能に優れていたため, 徐々に研究ホットスポットになりつつある。
しかし、これらのモデルが広く適用されたことにより、過度に考え直すという問題が徐々に顕在化していった。
モデル性能と推論能力を損なうことなく、推論経路の長さを短縮することを目的とした、様々な効率的な推論手法が提案されている。
論文 参考訳(メタデータ) (2025-08-04T06:54:31Z) - Lost at the Beginning of Reasoning [85.17612793300238]
第1の推論ステップが最終予測に不当に大きな影響を与えることを示す。
本稿では、報酬モデルを利用して高品質な第1推論ステップを特定し、維持する効率的なサンプリング戦略を提案する。
論文 参考訳(メタデータ) (2025-06-27T09:53:57Z) - Unified Multimodal Chain-of-Thought Reward Model through Reinforcement Fine-Tuning [31.727984223052648]
本稿では,最初の統一マルチモーダルCoT型報酬モデルUnifiedReward-Thinkを提案する。
まず、GPT-4oの推論過程を抽出するために、少量の画像生成嗜好データを用いる。
次に、大規模に統一されたマルチモーダル嗜好データを作成し、様々な視覚タスクにわたってモデルの推論プロセスを導出する。
論文 参考訳(メタデータ) (2025-05-06T08:46:41Z) - Rethinking harmless refusals when fine-tuning foundation models [0.8571111167616167]
本研究では,Large Language Models (LLMs) における微調整が,望ましくない振る舞いを隠蔽するだけでなく,効果的に緩和する程度について検討する。
ここでは、モデルが推論トレースの生成を止めるか、最終的なアウトプットの非倫理的な性質を損なうような倫理的推論トレースを生成するかのどちらかである。
論文 参考訳(メタデータ) (2024-06-27T22:08:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。