論文の概要: On the use of case estimate and transactional payment data in neural networks for individual loss reserving
- arxiv url: http://arxiv.org/abs/2601.05274v1
- Date: Sun, 28 Dec 2025 05:51:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-25 16:54:51.550188
- Title: On the use of case estimate and transactional payment data in neural networks for individual loss reserving
- Title(参考訳): 個別損失保存のためのニューラルネットワークにおけるケース見積とトランザクション支払データの利用について
- Authors: Benjamin Avanzi, Matthew Lambrianidis, Greg Taylor, Bernard Wong,
- Abstract要約: 我々は、要約トランザクションに基づいてトレーニングされたフィードフォワードニューラルネットワークと、クレームの支払履歴全体を分析するためのリカレントニューラルネットワークを比較する。
ケース推定が予測を大幅に改善する証拠は見出されているが、ニューラルネットワークにメモリを組み込むことで、測定精度が向上するのみである。
- 参考スコア(独自算出の注目度): 1.3532832187980637
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The use of neural networks trained on individual claims data has become increasingly popular in the actuarial reserving literature. We consider how to best input historical payment data in neural network models. Additionally, case estimates are also available in the format of a time series, and we extend our analysis to assessing their predictive power. In this paper, we compare a feed-forward neural network trained on summarised transactions to a recurrent neural network equipped to analyse a claim's entire payment history and/or case estimate development history. We draw conclusions from training and comparing the performance of the models on multiple, comparable highly complex datasets simulated from SPLICE (Avanzi, Taylor and Wang, 2023). We find evidence that case estimates will improve predictions significantly, but that equipping the neural network with memory only leads to meagre improvements. Although the case estimation process and quality will vary significantly between insurers, we provide a standardised methodology for assessing their value.
- Abstract(参考訳): 個々のクレームデータに基づいてトレーニングされたニューラルネットワークの使用は、アクチュアリ保存文学でますます人気が高まっている。
ニューラルネットワークモデルにおいて,過去の支払データを最適に入力する方法を検討する。
さらに、時系列の形式でもケース推定が可能であり、分析を予測能力の評価にまで拡張する。
本稿では,要約トランザクションに基づいて訓練されたフィードフォワードニューラルネットワークと,クレームの全支払履歴および/またはケース推定開発履歴を分析するための繰り返しニューラルネットワークを比較する。
我々は、SPLICE(Avanzi、Taylor、Wang、2023)をシミュレートした、複数の非常に複雑なデータセット上でのモデルのトレーニングと性能の比較から結論を導き出す。
ケース推定が予測を大幅に改善する証拠は見出されているが、ニューラルネットワークにメモリを組み込むことで、測定精度が向上するのみである。
ケース見積プロセスと品質は保険会社によって大きく異なるが、その価値を評価するための標準化された方法論を提供する。
関連論文リスト
- Deep Neural Networks Tend To Extrapolate Predictably [51.303814412294514]
ニューラルネットワークの予測は、アウト・オブ・ディストリビューション(OOD)入力に直面した場合、予測不可能で過信される傾向がある。
我々は、入力データがOODになるにつれて、ニューラルネットワークの予測が一定値に向かう傾向があることを観察する。
我々は、OOD入力の存在下でリスクに敏感な意思決定を可能にするために、私たちの洞察を実際に活用する方法を示します。
論文 参考訳(メタデータ) (2023-10-02T03:25:32Z) - Amortised Inference in Bayesian Neural Networks [0.0]
Amortized Pseudo-Observation Variational Inference Bayesian Neural Network (APOVI-BNN)を紹介する。
補正された推論は、従来の変分推論によって得られたものと類似または良好な品質であることが示される。
次に、APOVI-BNNをニューラルプロセスファミリーの新たなメンバーと見なす方法について論じる。
論文 参考訳(メタデータ) (2023-09-06T14:02:33Z) - Fast, Distribution-free Predictive Inference for Neural Networks with
Coverage Guarantees [25.798057062452443]
本稿では,予測推論(PI)のための新しい計算効率アルゴリズムを提案する。
データに対する分布的な仮定は不要で、ニューラルネットワークの既存のブートストラップ方式よりも高速に計算できる。
論文 参考訳(メタデータ) (2023-06-11T04:03:58Z) - Bilinear Input Normalization for Neural Networks in Financial
Forecasting [101.89872650510074]
本稿では,高頻度金融時系列を扱うディープニューラルネットワークのための新しいデータ駆動正規化手法を提案する。
提案手法は,財務時系列のバイモーダル特性を考慮したものである。
我々の実験は最先端のニューラルネットワークと高周波データを用いて行われ、他の正規化技術よりも大幅に改善された。
論文 参考訳(メタデータ) (2021-09-01T07:52:03Z) - Towards an Understanding of Benign Overfitting in Neural Networks [104.2956323934544]
現代の機械学習モデルは、しばしば膨大な数のパラメータを使用し、通常、トレーニング損失がゼロになるように最適化されている。
ニューラルネットワークの2層構成において、これらの良質な過適合現象がどのように起こるかを検討する。
本稿では,2層型ReLUネットワーク補間器を極小最適学習率で実現可能であることを示す。
論文 参考訳(メタデータ) (2021-06-06T19:08:53Z) - Improving Uncertainty Calibration via Prior Augmented Data [56.88185136509654]
ニューラルネットワークは、普遍関数近似器として機能することで、複雑なデータ分布から学習することに成功した。
彼らはしばしば予測に自信過剰であり、不正確で誤った確率的予測に繋がる。
本稿では,モデルが不当に過信である特徴空間の領域を探索し,それらの予測のエントロピーをラベルの以前の分布に対して条件的に高める手法を提案する。
論文 参考訳(メタデータ) (2021-02-22T07:02:37Z) - Measurement error models: from nonparametric methods to deep neural
networks [3.1798318618973362]
本稿では,測定誤差モデルの推定に有効なニューラルネットワーク設計を提案する。
完全に接続されたフィードフォワードニューラルネットワークを用いて回帰関数を$f(x)$に近似する。
我々は、ニューラルネットワークアプローチと古典的ノンパラメトリック手法を比較するために、広範囲にわたる数値的研究を行っている。
論文 参考訳(メタデータ) (2020-07-15T06:05:37Z) - Neural Networks and Value at Risk [59.85784504799224]
リスクしきい値推定における資産価値のモンテカルロシミュレーションを行う。
株式市場と長期債を試験資産として利用し、ニューラルネットワークについて検討する。
はるかに少ないデータでフィードされたネットワークは、大幅にパフォーマンスが悪くなっています。
論文 参考訳(メタデータ) (2020-05-04T17:41:59Z) - Deep learning for prediction of population health costs [0.0]
我々は、健康保険請求記録から将来のコストを予測するディープニューラルネットワークを開発した。
深層ネットワークと隆起回帰モデルを用いて, ドイツの保険業者14万人を対象に, 全1年間の医療費の予測を行った。
論文 参考訳(メタデータ) (2020-03-06T23:33:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。