論文の概要: Readability-Robust Code Summarization via Meta Curriculum Learning
- arxiv url: http://arxiv.org/abs/2601.05485v1
- Date: Fri, 09 Jan 2026 02:38:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-12 17:41:49.819527
- Title: Readability-Robust Code Summarization via Meta Curriculum Learning
- Title(参考訳): メタカリキュラム学習による可読性ローバストコード要約
- Authors: Wenhao Zeng, Yitian Chai, Hao Zhou, Fandong Meng, Jie Zhou, Xiaodong Gu,
- Abstract要約: 現実の世界では、コードが貧弱な構造や難読化され、モデルのパフォーマンスが著しく低下することが多い。
本稿では,可読性の低いコードに対するコード要約の堅牢性を向上する,新しい微調整手法であるRoFTCodeSumを提案する。
- 参考スコア(独自算出の注目度): 53.44612630063336
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Code summarization has emerged as a fundamental technique in the field of program comprehension. While code language models have shown significant advancements, the current models and benchmarks are confined to high-readability code, which contains sufficient semantic cues such as function and variable names. In the real world, however, code is often poorly structured or obfuscated, significantly degrading model performance. In this paper, we first empirically evaluate the robustness of state-of-the-art language models on poor-readability code for the task of code summarization, focusing on (1) their effectiveness, (2) the impact of prompt engineering, and (3) the robustness of different variants. Experimental results reveal that state-of-the-art models-including GPT-4o and DeepSeek-V3 experience a substantial performance drop when faced with poorly readable code, and that prompt engineering and reasoning-enhanced models offer limited improvements. Motivated by these findings, we propose RoFTCodeSum, a novel fine-tuning method that enhances the robustness of code summarization against poorly readable code. RoFTCodeSum marries the concepts of curriculum learning and meta-learning: based on the original dataset for fine-tuning, it creates curricular training sets, e.g., obfuscating function names and identifiers from the code, respectively, that have progressive difficulty in code comprehension. In each training step, the approach meta-updates the gradients using these progressively challenging datasets, thereby optimizing both accuracy and readability robustness simultaneously. Experimental results demonstrate that RoFTCodeSum exhibits increased robustness against semantic perturbation while enhancing performance on the original code.
- Abstract(参考訳): プログラム理解の分野では,コード要約が基本技術として登場した。
コード言語モデルは大幅に進歩してきたが、現在のモデルとベンチマークは高可読性コードに限定されており、関数や変数名のような十分なセマンティックキューを含んでいる。
しかし、現実の世界では、コードが貧弱な構造や難読化され、モデルのパフォーマンスが著しく低下することが多い。
本稿では,(1)コード要約作業における可読性の低いコードに対する最先端言語モデルのロバスト性を実証的に評価し,(1)その有効性,(2)迅速なエンジニアリングの影響,(3)異なるバリエーションのロバスト性に着目した。
実験結果から,GPT-4oやDeepSeek-V3を含む最先端のモデルでは,可読性の低いコードに直面すると大幅な性能低下がみられ,エンジニアリングと推論が強化されたモデルが得られた。
これらの結果に触発されたRoFTCodeSumは,可読性の低いコードに対するコード要約の堅牢性を高める新しい微調整法である。
RoFTCodeSumはカリキュラム学習とメタラーニングの概念を取り入れている: 微調整のためのオリジナルのデータセットに基づいて、コードから関数名と識別子を難解に抽出するなど、コードの理解が困難になるような、カリキュラムのトレーニングセットを生成する。
各トレーニングステップでは、アプローチはこれらの漸進的に困難なデータセットを使用して勾配をメタアップデートし、精度と可読性の両方を同時に最適化する。
実験の結果,RoFTCodeSumは意味的摂動に対する頑健性を高めつつ,元のコードの性能を高めていることがわかった。
関連論文リスト
- Function-to-Style Guidance of LLMs for Code Translation [59.487054943812836]
コード翻訳における大規模言語モデルの性能向上を目的として,F2STransという関数型案内パラダイムを提案する。
提案手法は,(1)高品質なソースターゲットコードペアを用いた翻訳精度を最適化する機能学習という2つの重要な段階から構成される。
我々は,最新のソースコード,広範なテストケース,手動で注釈付き接頭辞翻訳を含む新しいコード翻訳ベンチマークを導入する。
論文 参考訳(メタデータ) (2025-07-15T08:25:02Z) - The Code Barrier: What LLMs Actually Understand? [7.407441962359689]
本研究では,言語モデルの意味理解能力を評価するために,コード難読化を構造化テストフレームワークとして利用する。
難読化の複雑さが増加するにつれて、統計的に顕著な性能低下が見られる。
本研究では,言語モデルにおけるコード理解を評価するための新しい評価手法を提案する。
論文 参考訳(メタデータ) (2025-04-14T14:11:26Z) - When simplicity meets effectiveness: Detecting code comments coherence with word embeddings and LSTM [6.417777780911223]
コードコメントは、プログラマに実用的な情報を提供するため、ソフトウェア開発において重要な役割を果たす。
開発者はコードを更新した後、コメントをそのまま残す傾向があり、2つのアーティファクトの間に相違が生じます。
コードスニペットが与えられたら、そのコメントが一貫性があり、コードの背後にある意図をよく反映しているかどうかを特定することが重要です。
論文 参考訳(メタデータ) (2024-05-25T15:21:27Z) - Code Representation Learning At Scale [75.04686476303436]
2段階の事前学習スキームを用いて,大量のコードデータを用いてコード表現学習を行う。
まず、マスキング言語モデリングにおけるランダム性と、プログラミング言語の構造的側面の両方を活用して、エンコーダを訓練する。
そして、教師なしの方法で強陰性かつ強正に構築された対照的な学習を通して表現を強化する。
論文 参考訳(メタデータ) (2024-02-02T22:19:15Z) - A Syntax-Guided Multi-Task Learning Approach for Turducken-Style Code
Generation [19.489202790935902]
本稿では,構文誘導型マルチタスク学習手法TurduckenGenを提案する。
具体的には、まず最初に型情報をコードトークンに明示的に付加し、構文制約の表現をキャプチャします。
次に,構文制約表現を用いたコード生成を補助タスクとして形式化し,モデルの構文制約学習を可能にする。
論文 参考訳(メタデータ) (2023-03-09T06:22:07Z) - Enhancing Semantic Code Search with Multimodal Contrastive Learning and
Soft Data Augmentation [50.14232079160476]
コード検索のためのマルチモーダルコントラスト学習とソフトデータ拡張を用いた新しい手法を提案する。
我々は,6つのプログラミング言語を用いた大規模データセットにおけるアプローチの有効性を評価するために,広範囲な実験を行った。
論文 参考訳(メタデータ) (2022-04-07T08:49:27Z) - A Transformer-based Approach for Source Code Summarization [86.08359401867577]
コードトークン間のペア関係をモデル化することにより,要約のためのコード表現を学習する。
アプローチは単純であるにもかかわらず、最先端技術よりもかなりの差があることが示される。
論文 参考訳(メタデータ) (2020-05-01T23:29:36Z) - Leveraging Code Generation to Improve Code Retrieval and Summarization
via Dual Learning [18.354352985591305]
コード要約は、ソースコードスニペットが与えられた短い自然言語記述を生成し、コード検索は、自然言語クエリが与えられた関連するソースコードを取得する。
最近の研究は、これらの2つのタスクを組み合わせてパフォーマンスを改善している。
本稿では,新たなコード生成タスクを導入することによって,2つのタスクのエンド・ツー・エンド・モデルを提案する。
論文 参考訳(メタデータ) (2020-02-24T12:26:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。