論文の概要: AutoVulnPHP: LLM-Powered Two-Stage PHP Vulnerability Detection and Automated Localization
- arxiv url: http://arxiv.org/abs/2601.06177v1
- Date: Wed, 07 Jan 2026 14:36:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-13 19:08:00.645361
- Title: AutoVulnPHP: LLM-Powered Two-Stage PHP Vulnerability Detection and Automated Localization
- Title(参考訳): AutoVulnPHP: LLM駆動の2段階PHP脆弱性検出と自動ローカライゼーション
- Authors: Zhiqiang Wang, Yizhong Ding, Zilong Xiao, Jinyu Lu, Yan Jia, Yanjun Li,
- Abstract要約: 本稿では,2段階の脆弱性検出と微細な自動ローカライゼーションを結合したエンドツーエンドフレームワークであるAutoVulnPHPを提案する。
私たちは7つの脆弱性タイプにまたがって26,614ファイル(5.2M LOC)の大規模なPHP脆弱性データセットであるPHPVDにコントリビュートしています。
公開ベンチマークとPHPVDでは、AutoVulnPHPは99.7%の検出精度、99.5%のF1スコア、そして81.0%のローカライズレートを達成した。
- 参考スコア(独自算出の注目度): 6.6522885790986095
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: PHP's dominance in web development is undermined by security challenges: static analysis lacks semantic depth, causing high false positives; dynamic analysis is computationally expensive; and automated vulnerability localization suffers from coarse granularity and imprecise context. Additionally, the absence of large-scale PHP vulnerability datasets and fragmented toolchains hinder real-world deployment. We present AutoVulnPHP, an end-to-end framework coupling two-stage vulnerability detection with fine-grained automated localization. SIFT-VulMiner (Structural Inference for Flaw Triage Vulnerability Miner) generates vulnerability hypotheses using AST structures enhanced with data flow. SAFE-VulMiner (Semantic Analysis for Flaw Evaluation Vulnerability Miner) verifies candidates through pretrained code encoder embeddings, eliminating false positives. ISAL (Incremental Sequence Analysis for Localization) pinpoints root causes via syntax-guided tracing, chain-of-thought LLM inference, and causal consistency checks to ensure precision. We contribute PHPVD, the first large-scale PHP vulnerability dataset with 26,614 files (5.2M LOC) across seven vulnerability types. On public benchmarks and PHPVD, AutoVulnPHP achieves 99.7% detection accuracy, 99.5% F1 score, and 81.0% localization rate. Deployed on real-world repositories, it discovered 429 previously unknown vulnerabilities, 351 assigned CVE identifiers, validating its practical effectiveness.
- Abstract(参考訳): 静的解析はセマンティックな深さを欠き、高い偽陽性を引き起こし、動的解析は計算コストが高く、自動脆弱性ローカライゼーションは粗い粒度と不正確なコンテキストに悩まされる。
さらに、大規模なPHP脆弱性データセットと断片化されたツールチェーンが存在しないことで、現実のデプロイメントが妨げられる。
本稿では,2段階の脆弱性検出と微細な自動ローカライゼーションを結合したエンドツーエンドフレームワークであるAutoVulnPHPを提案する。
SIFT-VulMiner (Structural Inference for Flaw Triage Vulnerability Miner) はデータフローに強化されたAST構造を用いて脆弱性仮説を生成する。
SAFE-VulMiner (Semantic Analysis for Flaw Evaluation Vulnerability Miner) は、事前訓練されたコードエンコーダの埋め込みを通じて候補を検証する。
ISAL(Incremental Sequence Analysis for Localization)は、構文誘導トレース、LLM推論、因果一貫性チェックによる根本原因の特定を行う。
私たちは7つの脆弱性タイプにまたがって26,614ファイル(5.2M LOC)の大規模なPHP脆弱性データセットであるPHPVDにコントリビュートしています。
公開ベンチマークとPHPVDでは、AutoVulnPHPは99.7%の検出精度、99.5%のF1スコア、そして81.0%のローカライズレートを達成した。
現実世界のリポジトリにデプロイされた結果、429の既知の脆弱性が発見され、351のCVE識別子が割り当てられた。
関連論文リスト
- VulAgent: Hypothesis-Validation based Multi-Agent Vulnerability Detection [55.957275374847484]
VulAgentは仮説検証に基づくマルチエージェント脆弱性検出フレームワークである。
セマンティクスに敏感なマルチビュー検出パイプラインを実装しており、それぞれが特定の分析の観点から一致している。
平均して、VulAgentは全体的な精度を6.6%改善し、脆弱性のある固定されたコードペアの正確な識別率を最大450%向上させ、偽陽性率を約36%削減する。
論文 参考訳(メタデータ) (2025-09-15T02:25:38Z) - Weakly Supervised Vulnerability Localization via Multiple Instance Learning [46.980136742826836]
WeAkly によるマルチプルインスタンス学習による脆弱性ローカライゼーションのための WAVES という新しい手法を提案する。
WAVESは、ある関数が脆弱かどうか(すなわち脆弱性検出)を判定し、脆弱なステートメントをピンポイントする機能を持っている。
提案手法は,文レベルの脆弱性ローカライゼーションにおいて,脆弱性検出と最先端のパフォーマンスにおいて同等のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2025-09-14T15:11:39Z) - CyberGym: Evaluating AI Agents' Real-World Cybersecurity Capabilities at Scale [45.97598662617568]
我々は188のソフトウェアプロジェクトにわたる1,507の実際の脆弱性を特徴とする大規模ベンチマークであるCyberGymを紹介した。
我々はCyberGymが35のゼロデイ脆弱性と17の歴史的不完全なパッチを発見できることを示した。
これらの結果は、CyberGymは、サイバーセキュリティにおけるAIの進歩を測定するための堅牢なベンチマークであるだけでなく、直接的な現実世界のセキュリティ効果を生み出すためのプラットフォームでもあることを強調している。
論文 参考訳(メタデータ) (2025-06-03T07:35:14Z) - EXPLICATE: Enhancing Phishing Detection through Explainable AI and LLM-Powered Interpretability [44.2907457629342]
EXPLICATEは、三成分アーキテクチャによるフィッシング検出を強化するフレームワークである。
既存のディープラーニング技術と同等ですが、説明性が向上しています。
自動AIとフィッシング検出システムにおけるユーザ信頼の重大な隔たりに対処する。
論文 参考訳(メタデータ) (2025-03-22T23:37:35Z) - Yama: Precise Opcode-based Data Flow Analysis for Detecting PHP Applications Vulnerabilities [4.262259005587605]
Yama は、PHP のための文脈に敏感で経路に敏感な相互言語間データフロー解析手法である。
我々は,PHPオペコードの正確なセマンティクスと明確な制御フローにより,データフロー解析をより正確かつ効率的に行えることを発見した。
我々は,基本データフロー解析機能,複雑な意味解析機能,実世界のアプリケーションにおける脆弱性発見機能という3つの側面からヤマを評価した。
論文 参考訳(メタデータ) (2024-10-16T08:14:37Z) - RealVul: Can We Detect Vulnerabilities in Web Applications with LLM? [4.467475584754677]
本稿では,PHP 脆弱性検出用に設計された最初の LLM ベースのフレームワークである RealVul を紹介する。
コードの合理化と不要なセマンティック情報を排除しながら、潜在的な脆弱性トリガを分離できます。
また、データ合成法の改善により、PHPの脆弱性サンプルが不足している問題にも対処する。
論文 参考訳(メタデータ) (2024-10-10T03:16:34Z) - LLMs in Web Development: Evaluating LLM-Generated PHP Code Unveiling Vulnerabilities and Limitations [0.0]
本研究では,大規模言語モデルが生成するWebアプリケーションのセキュリティを評価し,2500 GPT-4生成PHP Webサイトを分析した。
本研究は,GPT-4 生成 PHP コード中の Insecure File Upload,sql Injection, Stored XSS, Reflected XSS の同定に重点を置いている。
BurpのScanによると、サイトの11.56%は、すぐに妥協できる。静的スキャンの結果が加わった26%には、Webインタラクションを通じて悪用できる少なくとも1つの脆弱性があった。
論文 参考訳(メタデータ) (2024-04-21T20:56:02Z) - Dataflow Analysis-Inspired Deep Learning for Efficient Vulnerability
Detection [17.761541379830373]
DeepDFAは、データフロー分析にインスパイアされたグラフ学習フレームワークである。
最高性能のベースラインモデルより75倍速く、9分で訓練された。
平均して17の脆弱性のうち8.7が検出され、パッチとバグの多いバージョンを区別することができた。
論文 参考訳(メタデータ) (2022-12-15T19:49:27Z) - VELVET: a noVel Ensemble Learning approach to automatically locate
VulnErable sTatements [62.93814803258067]
本稿では,ソースコード中の脆弱な文を見つけるための新しいアンサンブル学習手法であるVELVETを提案する。
我々のモデルは、グラフベースとシーケンスベースニューラルネットワークを組み合わせて、プログラムグラフの局所的およびグローバル的コンテキストを捕捉する。
VELVETは、合成データと実世界のデータに対して、それぞれ99.6%と43.6%の精度を達成している。
論文 参考訳(メタデータ) (2021-12-20T22:45:27Z) - Autosploit: A Fully Automated Framework for Evaluating the
Exploitability of Security Vulnerabilities [47.748732208602355]
Autosploitは脆弱性の悪用性を評価するためのフレームワークだ。
環境の異なる設定でエクスプロイトを自動的にテストする。
ノイズレス環境とノイズの多い環境の両方で脆弱性を悪用する能力に影響を与えるシステムの特性を識別することができる。
論文 参考訳(メタデータ) (2020-06-30T18:49:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。