論文の概要: AI-Powered Algorithms for the Prevention and Detection of Computer Malware Infections
- arxiv url: http://arxiv.org/abs/2601.06219v1
- Date: Fri, 09 Jan 2026 02:14:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-13 19:08:00.689366
- Title: AI-Powered Algorithms for the Prevention and Detection of Computer Malware Infections
- Title(参考訳): コンピュータマルウェア感染の予防と検出のためのAIによるアルゴリズム
- Authors: Rakesh Keshava, Sathish Kuppan Pandurangan, M. Sakthivanitha, Sankaranainar Parmsivan, Goutham Sunkara, R. Maruthi,
- Abstract要約: 本研究では,人工知能(AI)に基づくコンテキスト認識型ハイブリッドマルウェア検出フレームワークを提案する。
この新しいアプローチは、97.3%の精度で優れたパフォーマンスを提供し、同じ分野で確立されたいくつかの機械学習(ML)やディープラーニング(DL)と比較して、1.5%の偽陽性率と最小限の検出遅延しか得られない。
- 参考スコア(独自算出の注目度): 0.24919281650930605
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rise in frequency and complexity of malware attacks are viewed as a major threat to modern digital infrastructure, which means that traditional signature-based detection methods are becoming less effective. As cyber threats continue to evolve, there is a growing need for intelligent systems to accurately and proactively identify and prevent malware infections. This study presents a new hybrid context-aware malware detection framework(HCAMDF) based on artificial intelligence (AI), which combines static file analysis, dynamic behavioural analysis, and contextual metadata to provide more accurate and timely detection. HCADMF has a multi-layer architecture, which consists of lightweight static classifiers such as Long Short Term Memory (LSTM) for real-time behavioral analysis, and an ensemble risk scoring through the integration of multiple layers of prediction. Experimental evaluations of the new/methodology with benchmark datasets, EMBER and CIC-MalMem2022, showed that the new approach provides superior performances with an accuracy of 97.3%, only a 1.5% false positive rate and minimal detection delay compared to several existing machine learning(ML) and deep learning(DL) established methods in the same fields. The results show strong evidence that hybrid AI can detect both existing and novel malware variants, and lay the foundation on intelligent security systems that can enable real-time detection and adapt to a rapidly evolving threat landscape.
- Abstract(参考訳): マルウェア攻撃の頻度と複雑さの増大は、現代のデジタルインフラにとって大きな脅威と見なされている。
サイバー脅威が進化を続けるにつれ、マルウェアの感染を正確にかつ積極的に識別し予防するインテリジェントシステムの必要性が高まっている。
本研究では,静的ファイル解析,動的動作解析,コンテキストメタデータを組み合わせて,より正確かつタイムリーな検出を行う,AIに基づく新たなハイブリッドコンテキスト対応マルウェア検出フレームワーク(HCAMDF)を提案する。
HCADMFは、リアルタイムな行動分析のためのLong Short Term Memory (LSTM)のような軽量な静的分類器と、複数の予測層の統合によるアンサンブルリスクスコアリングからなる多層アーキテクチャを備えている。
ベンチマークデータセットであるEMBERとCIC-MalMem2022を用いた新しい手法の実験的評価により、新しい手法は97.3%の精度で優れた性能を提供することを示した。
その結果、ハイブリッドAIが既存のマルウェアと新しいマルウェアの両方を検知し、リアルタイムで検出し、急速に進化する脅威の状況に適応できるインテリジェントなセキュリティシステムの基礎を築いたという強い証拠が示される。
関連論文リスト
- Deep Learning Models for Robust Facial Liveness Detection [56.08694048252482]
本研究では,現代のアンチスプーフィング手法の欠陥に対処する新しい深層学習モデルを用いて,ロバストな解を提案する。
テクスチャ解析と実際の人間の特性に関連する反射特性を革新的に統合することにより、我々のモデルは、顕著な精度でレプリカと真の存在を区別する。
論文 参考訳(メタデータ) (2025-08-12T17:19:20Z) - Expert-in-the-Loop Systems with Cross-Domain and In-Domain Few-Shot Learning for Software Vulnerability Detection [38.083049237330826]
本研究では,CWE(Common Weaknessions)を用いたPythonコードの識別をシミュレーションすることにより,ソフトウェア脆弱性評価におけるLLM(Large Language Models)の利用について検討する。
その結果,ゼロショットプロンプトは性能が低いが,少数ショットプロンプトは分類性能を著しく向上させることがわかった。
モデル信頼性、解釈可能性、敵の堅牢性といった課題は、将来の研究にとって重要な領域のままである。
論文 参考訳(メタデータ) (2025-06-11T18:43:51Z) - Algorithmic Segmentation and Behavioral Profiling for Ransomware Detection Using Temporal-Correlation Graphs [0.0]
テンポラル相関グラフを利用して、悪意ある操作に固有の複雑な関係と時間パターンをモデル化する新しいフレームワークが導入された。
実験では、さまざまなランサムウェアファミリーにまたがるフレームワークの有効性を、常に高い精度、リコール、全体的な検出精度で実証した。
この研究は、動的グラフ分析と機械学習を統合して、脅威検出における将来のイノベーションを実現することによって、サイバーセキュリティ技術の進歩に貢献している。
論文 参考訳(メタデータ) (2025-01-29T06:09:25Z) - A Sysmon Incremental Learning System for Ransomware Analysis and Detection [1.495391051525033]
サイバー脅威、特にランサムウェア攻撃の増加に直面しているため、高度な検知と分析システムの必要性が高まっている。
これらの提案のほとんどは、新しいランサムウェアを検出するために、基礎となるモデルをスクラッチから更新する必要がある、非インクリメンタルな学習アプローチを活用している。
新たなランサムウェア株がモデルが更新されるまで検出されない可能性があるため、再トレーニング中に攻撃に対して脆弱なデータを残すため、このアプローチは問題となる。
本稿では,Sysmon Incremental Learning System for Analysis and Detection (SILRAD)を提案する。
論文 参考訳(メタデータ) (2025-01-02T06:22:58Z) - Learning in Multiple Spaces: Few-Shot Network Attack Detection with Metric-Fused Prototypical Networks [47.18575262588692]
本稿では,数発の攻撃検出に適した新しいマルチスペースプロトタイプ学習フレームワークを提案する。
Polyakの平均的なプロトタイプ生成を活用することで、このフレームワークは学習プロセスを安定化し、稀でゼロデイの攻撃に効果的に適応する。
ベンチマークデータセットによる実験結果から、MSPLは、目立たない、新しい攻撃タイプを検出する従来のアプローチよりも優れていることが示された。
論文 参考訳(メタデータ) (2024-12-28T00:09:46Z) - A Novel Approach to Malicious Code Detection Using CNN-BiLSTM and Feature Fusion [2.3039261241391586]
本研究では,マルウェアのバイナリファイルをグレースケールのイメージに変換するためにminhashアルゴリズムを用いる。
この研究は、IDA Proを用いてオペコードシーケンスをデコンパイルし、抽出し、特徴ベクトル化にN-gramとtf-idfアルゴリズムを適用した。
CNN-BiLSTM融合モデルは、画像の特徴とオプコードシーケンスを同時に処理し、分類性能を向上させるように設計されている。
論文 参考訳(メタデータ) (2024-10-12T07:10:44Z) - Leveraging LSTM and GAN for Modern Malware Detection [0.4799822253865054]
本稿では,マルウェア検出精度と速度を向上するために,ディープラーニングモデル,LSTMネットワーク,GAN分類器の利用を提案する。
研究結果は98%の精度で行われ、ディープラーニングの効率が積極的なサイバーセキュリティ防衛において決定的な役割を担っていることを示している。
論文 参考訳(メタデータ) (2024-05-07T14:57:24Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
本研究では,フレーバータグ付けアルゴリズムの脆弱性について,敵攻撃による検証を行った。
シミュレーション攻撃の影響を緩和する対人訓練戦略を提案する。
論文 参考訳(メタデータ) (2022-03-25T19:57:19Z) - Increasing the Confidence of Deep Neural Networks by Coverage Analysis [71.57324258813674]
本稿では、異なる安全でない入力に対してモデルを強化するために、カバレッジパラダイムに基づく軽量な監視アーキテクチャを提案する。
実験結果から,提案手法は強力な対向例とアウト・オブ・ディストリビューション・インプットの両方を検出するのに有効であることが示唆された。
論文 参考訳(メタデータ) (2021-01-28T16:38:26Z) - Adversarial vs behavioural-based defensive AI with joint, continual and
active learning: automated evaluation of robustness to deception, poisoning
and concept drift [62.997667081978825]
人工知能(AI)の最近の進歩は、サイバーセキュリティのための行動分析(UEBA)に新たな能力をもたらした。
本稿では、検出プロセスを改善し、人間の専門知識を効果的に活用することにより、この攻撃を効果的に軽減するソリューションを提案する。
論文 参考訳(メタデータ) (2020-01-13T13:54:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。