論文の概要: A Novel Approach to Malicious Code Detection Using CNN-BiLSTM and Feature Fusion
- arxiv url: http://arxiv.org/abs/2410.09401v1
- Date: Sat, 12 Oct 2024 07:10:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-30 14:34:09.546827
- Title: A Novel Approach to Malicious Code Detection Using CNN-BiLSTM and Feature Fusion
- Title(参考訳): CNN-BiLSTMと特徴融合を用いた誤り検出の新しいアプローチ
- Authors: Lixia Zhang, Tianxu Liu, Kaihui Shen, Cheng Chen,
- Abstract要約: 本研究では,マルウェアのバイナリファイルをグレースケールのイメージに変換するためにminhashアルゴリズムを用いる。
この研究は、IDA Proを用いてオペコードシーケンスをデコンパイルし、抽出し、特徴ベクトル化にN-gramとtf-idfアルゴリズムを適用した。
CNN-BiLSTM融合モデルは、画像の特徴とオプコードシーケンスを同時に処理し、分類性能を向上させるように設計されている。
- 参考スコア(独自算出の注目度): 2.3039261241391586
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the rapid advancement of Internet technology, the threat of malware to computer systems and network security has intensified. Malware affects individual privacy and security and poses risks to critical infrastructures of enterprises and nations. The increasing quantity and complexity of malware, along with its concealment and diversity, challenge traditional detection techniques. Static detection methods struggle against variants and packed malware, while dynamic methods face high costs and risks that limit their application. Consequently, there is an urgent need for novel and efficient malware detection techniques to improve accuracy and robustness. This study first employs the minhash algorithm to convert binary files of malware into grayscale images, followed by the extraction of global and local texture features using GIST and LBP algorithms. Additionally, the study utilizes IDA Pro to decompile and extract opcode sequences, applying N-gram and tf-idf algorithms for feature vectorization. The fusion of these features enables the model to comprehensively capture the behavioral characteristics of malware. In terms of model construction, a CNN-BiLSTM fusion model is designed to simultaneously process image features and opcode sequences, enhancing classification performance. Experimental validation on multiple public datasets demonstrates that the proposed method significantly outperforms traditional detection techniques in terms of accuracy, recall, and F1 score, particularly in detecting variants and obfuscated malware with greater stability. The research presented in this paper offers new insights into the development of malware detection technologies, validating the effectiveness of feature and model fusion, and holds promising application prospects.
- Abstract(参考訳): インターネット技術の急速な進歩により、コンピュータシステムへのマルウェアの脅威とネットワークセキュリティが強まりつつある。
マルウェアは個人のプライバシーとセキュリティに影響を与え、企業や国の重要なインフラにリスクをもたらす。
マルウェアの量と複雑さの増大と、その隠蔽と多様性は、従来の検出技術に挑戦する。
静的検出手法は変種と満載のマルウェアに対抗し、動的手法はアプリケーションを制限する高いコストとリスクに直面している。
そのため、精度と堅牢性を向上させるために、新規で効率的なマルウェア検出技術が緊急に必要である。
本研究はまず、マルウェアのバイナリファイルをグレースケールのイメージに変換するためにminhashアルゴリズムを使用し、続いてGISTアルゴリズムとLPPアルゴリズムを用いてグローバルおよびローカルテクスチャの特徴を抽出する。
さらに、IDA Proを用いてオペコード配列をデコンパイルし抽出し、特徴ベクトル化にN-gramとtf-idfアルゴリズムを適用した。
これらの特徴の融合により、モデルはマルウェアの行動特性を包括的に捉えることができる。
モデル構築に関して、CNN-BiLSTM融合モデルは、画像の特徴とオプコードシーケンスを同時に処理し、分類性能を向上させるように設計されている。
複数の公開データセットに対する実験的な検証により、提案手法は、精度、リコール、F1スコアにおいて従来の検出手法よりも著しく優れており、特に、より安定性の高い変種や難読マルウェアの検出において顕著であることが示された。
本稿では,マルウェア検出技術開発における新たな知見を提供し,特徴量とモデル融合の有効性を検証し,期待できる応用可能性を示す。
関連論文リスト
- StealthDiffusion: Towards Evading Diffusion Forensic Detection through Diffusion Model [62.25424831998405]
StealthDiffusionは、AI生成した画像を高品質で受け入れがたい敵の例に修正するフレームワークである。
ホワイトボックスとブラックボックスの設定の両方で有効であり、AI生成した画像を高品質な敵の偽造に変換する。
論文 参考訳(メタデータ) (2024-08-11T01:22:29Z) - Deep Learning Fusion For Effective Malware Detection: Leveraging Visual Features [12.431734971186673]
本研究では,マルウェアの実行可能量の異なるモードで学習した畳み込みニューラルネットワークモデルを融合する能力について検討する。
我々は3種類の視覚的マルウェアを利用した新しいマルチモーダル融合アルゴリズムを提案している。
提案した戦略は、与えられたデータセット内のマルウェアを識別する際の検出レート1.00(0-1)である。
論文 参考訳(メタデータ) (2024-05-23T08:32:40Z) - Leveraging LSTM and GAN for Modern Malware Detection [0.4799822253865054]
本稿では,マルウェア検出精度と速度を向上するために,ディープラーニングモデル,LSTMネットワーク,GAN分類器の利用を提案する。
研究結果は98%の精度で行われ、ディープラーニングの効率が積極的なサイバーセキュリティ防衛において決定的な役割を担っていることを示している。
論文 参考訳(メタデータ) (2024-05-07T14:57:24Z) - Do You Trust Your Model? Emerging Malware Threats in the Deep Learning
Ecosystem [37.650342256199096]
ニューラルネットワークに自己抽出型自己実行型マルウェアを組み込むテクニックであるMaleficNet 2.0を紹介する。
MaleficNet 2.0インジェクションテクニックはステルス性があり、モデルのパフォーマンスを低下させることなく、除去テクニックに対して堅牢である。
我々は、MaleficNet 2.0を用いた概念実証型自己抽出ニューラルネットワークマルウェアを実装し、広く採用されている機械学習フレームワークに対する攻撃の実用性を実証した。
論文 参考訳(メタデータ) (2024-03-06T10:27:08Z) - Comprehensive evaluation of Mal-API-2019 dataset by machine learning in malware detection [0.5475886285082937]
本研究では,機械学習技術を用いたマルウェア検出の徹底的な検討を行う。
その目的は、脅威をより効果的に識別し緩和することで、サイバーセキュリティの能力を向上させることである。
論文 参考訳(メタデータ) (2024-03-04T17:22:43Z) - Discovering Malicious Signatures in Software from Structural
Interactions [7.06449725392051]
本稿では,ディープラーニング,数学的手法,ネットワーク科学を活用する新しいマルウェア検出手法を提案する。
提案手法は静的および動的解析に焦点をあて,LLVM(Lower-Level Virtual Machine)を用いて複雑なネットワーク内のアプリケーションをプロファイリングする。
弊社のアプローチは、マルウェアの検出を大幅に改善し、より正確で効率的なソリューションを提供する。
論文 参考訳(メタデータ) (2023-12-19T23:42:20Z) - Using Machine Learning To Identify Software Weaknesses From Software
Requirement Specifications [49.1574468325115]
本研究は、要求仕様からソフトウェア弱点を特定するための効率的な機械学習アルゴリズムを見つけることに焦点を当てる。
ProMISE_exp. Naive Bayes、サポートベクターマシン(SVM)、決定木、ニューラルネットワーク、畳み込みニューラルネットワーク(CNN)アルゴリズムをテストした。
論文 参考訳(メタデータ) (2023-08-10T13:19:10Z) - A survey on hardware-based malware detection approaches [45.24207460381396]
ハードウェアベースのマルウェア検出アプローチは、ハードウェアパフォーマンスカウンタと機械学習技術を活用する。
このアプローチを慎重に分析し、最も一般的な方法、アルゴリズム、ツール、および輪郭を形成するデータセットを解明します。
この議論は、協調的有効性のための混合ハードウェアとソフトウェアアプローチの構築、ハードウェア監視ユニットの不可欠な拡張、ハードウェアイベントとマルウェアアプリケーションの間の相関関係の理解を深めている。
論文 参考訳(メタデータ) (2023-03-22T13:00:41Z) - Mal2GCN: A Robust Malware Detection Approach Using Deep Graph
Convolutional Networks With Non-Negative Weights [1.3190581566723918]
実世界の敵に対するマルウェア検出モデルの堅牢性を評価するために,ブラックボックスのソースコードをベースとしたマルウェア生成手法を提案する。
そこで我々は,堅牢なマルウェア検出モデルであるMal2GCNを提案する。Mal2GCNは,グラフ畳み込みネットワークの表現力と非負重み学習法を組み合わせて,高い検出精度でマルウェア検出モデルを作成する。
論文 参考訳(メタデータ) (2021-08-27T19:42:13Z) - Anomaly Detection Based on Selection and Weighting in Latent Space [73.01328671569759]
SWADと呼ばれる新しい選択および重み付けに基づく異常検出フレームワークを提案する。
ベンチマークと実世界のデータセットによる実験は、SWADの有効性と優位性を示している。
論文 参考訳(メタデータ) (2021-03-08T10:56:38Z) - Increasing the Confidence of Deep Neural Networks by Coverage Analysis [71.57324258813674]
本稿では、異なる安全でない入力に対してモデルを強化するために、カバレッジパラダイムに基づく軽量な監視アーキテクチャを提案する。
実験結果から,提案手法は強力な対向例とアウト・オブ・ディストリビューション・インプットの両方を検出するのに有効であることが示唆された。
論文 参考訳(メタデータ) (2021-01-28T16:38:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。