論文の概要: ArenaRL: Scaling RL for Open-Ended Agents via Tournament-based Relative Ranking
- arxiv url: http://arxiv.org/abs/2601.06487v1
- Date: Sat, 10 Jan 2026 08:43:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-13 19:08:00.842667
- Title: ArenaRL: Scaling RL for Open-Ended Agents via Tournament-based Relative Ranking
- Title(参考訳): ArenaRL: トーナメントベースの相対ランク付けによるオープンエンディングエージェントのスケーリングRL
- Authors: Qiang Zhang, Boli Chen, Fanrui Zhang, Ruixue Ding, Shihang Wang, Qiuchen Wang, Yinfeng Huang, Haonan Zhang, Rongxiang Zhu, Pengyong Wang, Ailin Ren, Xin Li, Pengjun Xie, Jiawei Liu, Ning Guo, Jingren Zhou, Zheng-Jun Zha,
- Abstract要約: ArenaRLは、ポイントワイドスカラースコアからグループ内相対ランクにシフトする強化学習パラダイムである。
我々は,グループ内対角アリーナを構築し,安定した有利な信号を得るためのトーナメントベースのランキングスキームを考案する。
実験により、ArenaRLは標準のRLベースラインを大幅に上回っていることが示された。
- 参考スコア(独自算出の注目度): 84.07076200941474
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reinforcement learning has substantially improved the performance of LLM agents on tasks with verifiable outcomes, but it still struggles on open-ended agent tasks with vast solution spaces (e.g., complex travel planning). Due to the absence of objective ground-truth for these tasks, current RL algorithms largely rely on reward models that assign scalar scores to individual responses. We contend that such pointwise scoring suffers from an inherent discrimination collapse: the reward model struggles to distinguish subtle advantages among different trajectories, resulting in scores within a group being compressed into a narrow range. Consequently, the effective reward signal becomes dominated by noise from the reward model, leading to optimization stagnation. To address this, we propose ArenaRL, a reinforcement learning paradigm that shifts from pointwise scalar scoring to intra-group relative ranking. ArenaRL introduces a process-aware pairwise evaluation mechanism, employing multi-level rubrics to assign fine-grained relative scores to trajectories. Additionally, we construct an intra-group adversarial arena and devise a tournament-based ranking scheme to obtain stable advantage signals. Empirical results confirm that the built seeded single-elimination scheme achieves nearly equivalent advantage estimation accuracy to full pairwise comparisons with O(N^2) complexity, while operating with only O(N) complexity, striking an optimal balance between efficiency and precision. Furthermore, to address the lack of full-cycle benchmarks for open-ended agents, we build Open-Travel and Open-DeepResearch, two high-quality benchmarks featuring a comprehensive pipeline covering SFT, RL training, and multi-dimensional evaluation. Extensive experiments show that ArenaRL substantially outperforms standard RL baselines, enabling LLM agents to generate more robust solutions for complex real-world tasks.
- Abstract(参考訳): 強化学習は、検証可能な結果のタスクにおけるLLMエージェントの性能を大幅に向上させたが、それでも広大なソリューション空間(複雑な旅行計画など)を持つオープンエンドエージェントタスクに苦戦している。
これらのタスクに対する客観的な基礎構造がないため、現在のRLアルゴリズムはスカラースコアを個々の応答に割り当てる報酬モデルに大きく依存している。
報酬モデルでは、異なる軌跡間の微妙な優位性を区別することが困難であり、その結果、グループ内のスコアは狭い範囲に圧縮される。
その結果、有効報酬信号は報酬モデルからのノイズに支配され、最適化が停滞する。
そこで本研究では,ポイントワイドスカラースコアからグループ内相対ランクにシフトする強化学習パラダイムであるArenaRLを提案する。
ArenaRLはプロセス対応のペアワイズ評価機構を導入し、多レベルルーリックを用いて微粒な相対スコアをトラジェクトリに割り当てる。
さらに,グループ内対角アリーナを構築し,安定した有利な信号を得るためのトーナメントベースのランキングスキームを考案する。
実験結果から,O(N^2)複雑性とO(N)複雑性とをほぼ同等に比較した上で,O(N)複雑性のみを演算し,効率と精度の最適バランスを達成できることがわかった。
さらに、オープンエンドエージェントのフルサイクルベンチマークの欠如に対処するため、SFT、RLトレーニング、多次元評価を含む包括的なパイプラインを備えた2つの高品質ベンチマークであるOpen-TravelとOpen-DeepResearchを構築した。
大規模な実験により、ArenaRLは標準のRLベースラインを大幅に上回り、LLMエージェントが複雑な実世界のタスクに対してより堅牢なソリューションを生成できることが示されている。
関連論文リスト
- ICPO: Intrinsic Confidence-Driven Group Relative Preference Optimization for Efficient Reinforcement Learning [17.98065634130798]
固有信頼駆動型グループ相対選好最適化法(ICPO)を提案する。
ICPOは、複数の応答の相対生成確率を同一の入力プロンプトで比較することにより、各応答に対する優先優位スコアを算出する。
優先的優位性スコアは、粗大な報酬や報奨ノイズの問題を緩和するだけでなく、過度に信頼された誤りを効果的に抑制することを発見した。
論文 参考訳(メタデータ) (2025-11-26T03:10:15Z) - Information Gain-based Policy Optimization: A Simple and Effective Approach for Multi-Turn LLM Agents [28.145430029174577]
大規模言語モデル(LLM)ベースのエージェントは、外部環境と対話する能力を高めるために強化学習(RL)でますます訓練されている。
既存のアプローチは通常、最終回答でのみ提供される結果に基づく報酬に依存します。
本稿では,情報ゲインに基づくポリシー最適化(IGPO)を提案する。
論文 参考訳(メタデータ) (2025-10-16T17:59:32Z) - Agentic Reinforcement Learning with Implicit Step Rewards [92.26560379363492]
大規模言語モデル (LLMs) は強化学習 (agentic RL) を用いた自律的エージェントとして発展している。
我々は,標準RLアルゴリズムとシームレスに統合された一般的なクレジット割り当て戦略であるエージェントRL(iStar)について,暗黙的なステップ報酬を導入する。
我々は,WebShopとVisualSokobanを含む3つのエージェントベンチマークと,SOTOPIAにおける検証不可能な報酬とのオープンなソーシャルインタラクションについて評価した。
論文 参考訳(メタデータ) (2025-09-23T16:15:42Z) - Your Reward Function for RL is Your Best PRM for Search: Unifying RL and Search-Based TTS [62.22644307952087]
本稿では、RLベースと検索ベースTTSの最初の自然統合であるAIRL-Sを紹介する。
逆逆強化学習(AIRL)とグループ相対政策最適化(GRPO)を組み合わせることで、正しい推論トレースから高密度な動的PRMを直接学習する。
提案手法は,GPT-4oと一致して,ベースモデル上での平均9%の性能向上を図っている。
論文 参考訳(メタデータ) (2025-08-19T23:41:15Z) - RL-PLUS: Countering Capability Boundary Collapse of LLMs in Reinforcement Learning with Hybrid-policy Optimization [111.1749164063616]
大規模言語モデル(LLM)のための新しいハイブリッド政治最適化手法RL-PLUSを提案する。
RL-PLUSは、外部データと内部エクスプロイトを相乗化して、より強力な推論能力を達成し、ベースモデルのバウンダリを超える。
提案手法の優位性と一般化性を示すため,理論解析と広範な実験を行った。
論文 参考訳(メタデータ) (2025-07-31T23:55:29Z) - Agentic Reinforced Policy Optimization [66.96989268893932]
検証可能な報酬付き大規模強化学習(RLVR)は,大規模言語モデル(LLM)を単一ターン推論タスクに活用する効果を実証している。
現在のRLアルゴリズムは、モデル固有のロングホライゾン推論能力と、マルチターンツールインタラクションにおけるその習熟性のバランスが不十分である。
エージェント強化ポリシー最適化(ARPO: Agentic Reinforced Policy Optimization)は,マルチターンLDMエージェントを学習するためのエージェントRLアルゴリズムである。
論文 参考訳(メタデータ) (2025-07-26T07:53:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。