論文の概要: Examining the Effectiveness of Transformer-Based Smart Contract Vulnerability Scan
- arxiv url: http://arxiv.org/abs/2601.07334v1
- Date: Mon, 12 Jan 2026 09:00:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-13 19:08:01.300326
- Title: Examining the Effectiveness of Transformer-Based Smart Contract Vulnerability Scan
- Title(参考訳): 変圧器を用いたスマートコントラクト脆弱性スキャンの有効性の検討
- Authors: Emre Balci, Timucin Aydede, Gorkem Yilmaz, Ece Gelal Soyak,
- Abstract要約: スマートコントラクトの脆弱性スキャンに対するディープラーニングに基づくアプローチを評価する。
本稿では,トランスフォーマを用いたスマートコートの脆弱性解析装置VASCOTを提案する。
VASCOTの性能は、最先端のLSTMベースの脆弱性検出モデルと比較される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Smart contract technology facilitates self-executing agreements on the blockchain, eliminating dependency on an external trusted authority. However, smart contracts may expose vulnerabilities that can lead to financial losses and disruptions in decentralized applications. In this work, we evaluate deep learning-based approaches for vulnerability scanning of Ethereum smart contracts. We propose VASCOT, a Vulnerability Analyzer for Smart COntracts using Transformers, which performs sequential analysis of Ethereum Virtual Machine (EVM) bytecode and incorporates a sliding window mechanism to overcome input length constraints. To assess VASCOT's detection efficacy, we construct a dataset of 16,469 verified Ethereum contracts deployed in 2022, and annotate it using trace analysis with concrete validation to mitigate false positives. VASCOT's performance is then compared against a state-of-the-art LSTM-based vulnerability detection model on both our dataset and an older public dataset. Our findings highlight the strengths and limitations of each model, providing insights into their detection capabilities and generalizability.
- Abstract(参考訳): スマートコントラクト技術は、ブロックチェーンの自己実行契約を促進し、外部の信頼できる権限への依存を排除します。
しかし、スマートコントラクトは、分散化されたアプリケーションの財政的損失と破壊につながる脆弱性を露呈する可能性がある。
本研究では,Ethereumスマートコントラクトの脆弱性スキャンに対するディープラーニングベースのアプローチを評価する。
本稿では,EVMバイトコードの逐次解析を行い,入力長制約を克服するスライディングウィンドウ機構を組み込んだ,トランスフォーマを用いたスマートコート用脆弱性解析器VASCOTを提案する。
VASCOTの検出効率を評価するため,2022年にデプロイされたEthereum契約16,469件のデータセットを構築し,具体的な検証によるトレース分析を用いてアノテートし,偽陽性を軽減した。
VASCOTのパフォーマンスは、私たちのデータセットと古いパブリックデータセットの両方で、最先端のLSTMベースの脆弱性検出モデルと比較される。
本研究は,各モデルの強みと限界を強調し,その検出能力と一般化可能性について考察した。
関連論文リスト
- Long-horizon Reasoning Agent for Olympiad-Level Mathematical Problem Solving [65.02106674311908]
本稿では,マルチラウンド階層的推論を行う長期水平数学エージェントであるIntern-S1-MOを紹介する。
コンパクトメモリをレムマの形で維持することにより、Intern-S1-MOはレムマリッチ推論空間をより自由に探索することができる。
実験の結果、インターンS1-MOはIMO2025の非幾何学的問題で35点中26点を得ることができ、銀メダリストのパフォーマンスに匹敵することがわかった。
論文 参考訳(メタデータ) (2025-12-11T15:26:28Z) - One Signature, Multiple Payments: Demystifying and Detecting Signature Replay Vulnerabilities in Smart Contracts [56.94148977064169]
署名の使用状況のチェックが不足すると、繰り返し検証が行われ、許可の不正使用のリスクが増大し、契約資産が脅かされる可能性がある。
我々はこの問題をSignature Replay Vulnerability (SRV) として定義する。
37のブロックチェーンセキュリティ企業を対象とした1,419の監査報告から、詳細なSRV記述と5種類のSRVを分類した108を識別しました。
論文 参考訳(メタデータ) (2025-11-12T09:17:13Z) - Decompiling Smart Contracts with a Large Language Model [51.49197239479266]
Etherscanの78,047,845のスマートコントラクトがデプロイされているにも関わらず(2025年5月26日現在)、わずか767,520 (1%)がオープンソースである。
この不透明さは、オンチェーンスマートコントラクトバイトコードの自動意味解析を必要とする。
バイトコードを可読でセマンティックに忠実なSolidityコードに変換する,先駆的な逆コンパイルパイプラインを導入する。
論文 参考訳(メタデータ) (2025-06-24T13:42:59Z) - EthCluster: An Unsupervised Static Analysis Method for Ethereum Smart Contract [1.1923665587866032]
スマートコントラクトのSolidityソースコードの脆弱性を特定するために、教師なし学習を使用してモデルをトレーニングする。
実世界のスマートコントラクトに関連する課題に対処するため、トレーニングデータは実際の脆弱性サンプルから導出します。
論文 参考訳(メタデータ) (2025-04-14T08:36:21Z) - SmartBugBert: BERT-Enhanced Vulnerability Detection for Smart Contract Bytecode [0.7018579932647147]
本稿では,BERTに基づくディープラーニングと制御フローグラフ(CFG)解析を組み合わせて,バイトコードから直接脆弱性を検出する新しいアプローチであるSmartBugBertを紹介する。
提案手法は,まずスマートコントラクトバイトコードを最適化されたオペコードシーケンスに分解し,TF-IDFを用いて意味的特徴を抽出し,実行ロジックをキャプチャするために制御フローグラフを構築し,ターゲット分析のために脆弱なCFGフラグメントを分離する。
論文 参考訳(メタデータ) (2025-04-07T12:30:12Z) - Are You Getting What You Pay For? Auditing Model Substitution in LLM APIs [71.7892165868749]
LLM(Commercial Large Language Model) APIは基本的な信頼の問題を生み出します。
ユーザーは特定のモデルに課金するが、プロバイダが忠実に提供できることを保証することはない。
我々は,このモデル置換問題を定式化し,現実的な逆条件下での検出方法を評価する。
我々は,信頼された実行環境(TEE)を実用的で堅牢なソリューションとして使用し,評価する。
論文 参考訳(メタデータ) (2025-04-07T03:57:41Z) - ContractTrace: Retracing Smart Contract Versions for Security Analyses [4.126275271359132]
ContractTraceは、スマートコントラクトのバージョンを正確に識別し、コヒーレントなラインにリンクする自動化インフラストラクチャです。
この機能は、脆弱性の伝播パターンを理解し、ブロックチェーン環境におけるセキュリティパッチの有効性を評価するために不可欠である。
論文 参考訳(メタデータ) (2024-12-30T11:10:22Z) - WACANA: A Concolic Analyzer for Detecting On-chain Data Vulnerabilities in WASM Smart Contracts [7.228752437403636]
WACANAはWASMコントラクトのアナライザで、オンチェーンデータAPIの詳細なエミュレーションを通じて、脆弱性を正確に検出する。
WACANAはオンチェーンデータテーブルの構造と対応するAPI関数の両方を正確にシミュレートする。
133のコントラクトによる脆弱性データセットの評価は、WACANAが最先端のツールを正確性で上回っていることを示している。
論文 参考訳(メタデータ) (2024-12-05T07:51:17Z) - Vulnerability Detection in Ethereum Smart Contracts via Machine Learning: A Qualitative Analysis [0.0]
スマートコントラクトに対する機械学習の脆弱性検出における技術の現状を分析する。
スマートコントラクトにおける脆弱性検出の精度,スコープ,効率を高めるためのベストプラクティスについて議論する。
論文 参考訳(メタデータ) (2024-07-26T10:09:44Z) - Enhancing Smart Contract Security Analysis with Execution Property Graphs [48.31617821205042]
ランタイム仮想マシン用に特別に設計された動的解析フレームワークであるClueを紹介する。
Clueは契約実行中に重要な情報をキャプチャし、新しいグラフベースの表現であるExecution Property Graphを使用する。
評価結果から, クリューの真正率, 偽正率の低い優れた性能が, 最先端のツールよりも優れていた。
論文 参考訳(メタデータ) (2023-05-23T13:16:42Z) - ESCORT: Ethereum Smart COntRacTs Vulnerability Detection using Deep
Neural Network and Transfer Learning [80.85273827468063]
既存の機械学習ベースの脆弱性検出方法は制限され、スマートコントラクトが脆弱かどうかのみ検査される。
スマートコントラクトのための初のDeep Neural Network(DNN)ベースの脆弱性検出フレームワークであるESCORTを提案する。
ESCORTは6種類の脆弱性に対して平均95%のF1スコアを達成し,検出時間は契約あたり0.02秒であることを示す。
論文 参考訳(メタデータ) (2021-03-23T15:04:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。