論文の概要: One Signature, Multiple Payments: Demystifying and Detecting Signature Replay Vulnerabilities in Smart Contracts
- arxiv url: http://arxiv.org/abs/2511.09134v1
- Date: Thu, 13 Nov 2025 01:34:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-13 22:34:54.426948
- Title: One Signature, Multiple Payments: Demystifying and Detecting Signature Replay Vulnerabilities in Smart Contracts
- Title(参考訳): ひとつの署名、複数の支払い:スマートコントラクトにおける署名のリプレイ脆弱性のデミスティファイションと検出
- Authors: Zexu Wang, Jiachi Chen, Zewei Lin, Wenqing Chen, Kaiwen Ning, Jianxing Yu, Yuming Feng, Yu Zhang, Weizhe Zhang, Zibin Zheng,
- Abstract要約: 署名の使用状況のチェックが不足すると、繰り返し検証が行われ、許可の不正使用のリスクが増大し、契約資産が脅かされる可能性がある。
我々はこの問題をSignature Replay Vulnerability (SRV) として定義する。
37のブロックチェーンセキュリティ企業を対象とした1,419の監査報告から、詳細なSRV記述と5種類のSRVを分類した108を識別しました。
- 参考スコア(独自算出の注目度): 56.94148977064169
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Smart contracts have significantly advanced blockchain technology, and digital signatures are crucial for reliable verification of contract authority. Through signature verification, smart contracts can ensure that signers possess the required permissions, thus enhancing security and scalability. However, lacking checks on signature usage conditions can lead to repeated verifications, increasing the risk of permission abuse and threatening contract assets. We define this issue as the Signature Replay Vulnerability (SRV). In this paper, we conducted the first empirical study to investigate the causes and characteristics of the SRVs. From 1,419 audit reports across 37 blockchain security companies, we identified 108 with detailed SRV descriptions and classified five types of SRVs. To detect these vulnerabilities automatically, we designed LASiR, which utilizes the general semantic understanding ability of Large Language Models (LLMs) to assist in the static taint analysis of the signature state and identify the signature reuse behavior. It also employs path reachability verification via symbolic execution to ensure effective and reliable detection. To evaluate the performance of LASiR, we conducted large-scale experiments on 15,383 contracts involving signature verification, selected from the initial dataset of 918,964 contracts across four blockchains: Ethereum, Binance Smart Chain, Polygon, and Arbitrum. The results indicate that SRVs are widespread, with affected contracts holding $4.76 million in active assets. Among these, 19.63% of contracts that use signatures on Ethereum contain SRVs. Furthermore, manual verification demonstrates that LASiR achieves an F1-score of 87.90% for detection. Ablation studies and comparative experiments reveal that the semantic information provided by LLMs aids static taint analysis, significantly enhancing LASiR's detection performance.
- Abstract(参考訳): スマートコントラクトには高度なブロックチェーン技術があり、コントラクト権限の信頼性検証にはデジタルシグネチャが不可欠だ。
シグネチャ検証を通じて、スマートコントラクトは、シグネチャが必要な権限を持っていることを保証し、セキュリティとスケーラビリティを向上させる。
しかし、署名の使用状況のチェックが不足すると、繰り返しの検証が行われ、許可の不正使用のリスクが増大し、契約資産が脅かされる可能性がある。
この問題をSRV(Signature Replay Vulnerability)と定義する。
本稿では,SRVの原因と特徴を明らかにするために,最初の実証的研究を行った。
37のブロックチェーンセキュリティ企業を対象とした1,419の監査報告から、詳細なSRV記述と5種類のSRVを分類した108を識別しました。
これらの脆弱性を自動的に検出するために,Large Language Models (LLM) の汎用意味理解機能を利用したLASiRを設計した。
また、効果的で信頼性の高い検出を保証するために、シンボル実行によるパス到達性検証も採用している。
LASiRの性能を評価するために、Ethereum、Binance Smart Chain、Polygon、Arbitrumという4つのブロックチェーンで918,964のコントラクトの最初のデータセットから選択された署名検証を含む15,383のコントラクトに対して大規模な実験を行った。
その結果、SRVは広く普及しており、影響を受ける契約は4.76億ドルのアクティブアセットを保有していることがわかった。
Ethereumのシグネチャを使用する契約の19.63%にはSRVが含まれている。
さらに、手動による検証により、LASiRは87.90%のF1スコアを達成した。
アブレーション研究と比較実験により、LLMによって提供される意味情報は静的なテイント解析に役立ち、LASiRの検出性能を著しく向上させることが明らかとなった。
関連論文リスト
- Trace: Securing Smart Contract Repository Against Access Control Vulnerability [58.02691083789239]
GitHubはソースコード、ドキュメント、設定ファイルを含む多数のスマートコントラクトリポジトリをホストしている。
サードパーティの開発者は、カスタム開発中にこれらのリポジトリからコードを参照、再利用、フォークすることが多い。
スマートコントラクトの脆弱性を検出する既存のツールは、複雑なリポジトリを扱う能力に制限されている。
論文 参考訳(メタデータ) (2025-10-22T05:18:28Z) - Decompiling Smart Contracts with a Large Language Model [51.49197239479266]
Etherscanの78,047,845のスマートコントラクトがデプロイされているにも関わらず(2025年5月26日現在)、わずか767,520 (1%)がオープンソースである。
この不透明さは、オンチェーンスマートコントラクトバイトコードの自動意味解析を必要とする。
バイトコードを可読でセマンティックに忠実なSolidityコードに変換する,先駆的な逆コンパイルパイプラインを導入する。
論文 参考訳(メタデータ) (2025-06-24T13:42:59Z) - Demystifying and Detecting Cryptographic Defects in Ethereum Smart Contracts [14.203991954526789]
スマートコントラクトにおける暗号欠陥の解読と検出を目的とした,最初の研究を行った。
我々は,スマートコントラクトにおける暗号欠陥検出を自動化するファジィベースのツールであるCrySolを提案した。
25,745の暗号関連スマートコントラクトを含む大規模データセットを収集し,CrySolの有効性を評価した。
論文 参考訳(メタデータ) (2024-08-09T08:40:08Z) - All Your Tokens are Belong to Us: Demystifying Address Verification Vulnerabilities in Solidity Smart Contracts [24.881450403784786]
検証のプロセスにおける脆弱性は、大きなセキュリティ問題を引き起こす可能性がある。
静的EVMオペコードシミュレーションに基づく軽量なテナントアナライザであるAVVERIFIERの設計と実装を行う。
500万以上のスマートコントラクトを大規模に評価した結果,コミュニティが公表していない812の脆弱性のあるスマートコントラクトを特定しました。
論文 参考訳(メタデータ) (2024-05-31T01:02:07Z) - Improving Smart Contract Security with Contrastive Learning-based Vulnerability Detection [8.121484960948303]
スマートコントラクト脆弱性に対するコントラスト学習強化型自動認識手法であるClearを提案する。
特にClearは、契約間のきめ細かい相関情報をキャプチャするために、対照的な学習(CL)モデルを採用している。
その結果,既存のディープラーニング手法よりも9.73%-39.99%高いF1スコアが得られることがわかった。
論文 参考訳(メタデータ) (2024-04-27T09:13:25Z) - Efficiently Detecting Reentrancy Vulnerabilities in Complex Smart Contracts [35.26195628798847]
既存の脆弱性検出ツールは、複雑なコントラクトにおける脆弱性の効率性や検出成功率の面では不十分である。
SliSEは、複雑なコントラクトに対するReentrancy脆弱性を検出する堅牢で効率的な方法を提供する。
論文 参考訳(メタデータ) (2024-03-17T16:08:30Z) - Vulnerability Scanners for Ethereum Smart Contracts: A Large-Scale Study [44.25093111430751]
2023年だけでも、そのような脆弱性は数十億ドルを超える巨額の損失をもたらした。
スマートコントラクトの脆弱性を検出し、軽減するために、さまざまなツールが開発されている。
本研究では,既存のセキュリティスキャナの有効性と,現在も継続している脆弱性とのギャップについて検討する。
論文 参考訳(メタデータ) (2023-12-27T11:26:26Z) - FedSOV: Federated Model Secure Ownership Verification with Unforgeable
Signature [60.99054146321459]
フェデレートラーニングにより、複数のパーティがプライベートデータを公開せずにグローバルモデルを学ぶことができる。
本稿では,FedSOVという暗号署名に基づくフェデレート学習モデルのオーナシップ検証手法を提案する。
論文 参考訳(メタデータ) (2023-05-10T12:10:02Z) - ESCORT: Ethereum Smart COntRacTs Vulnerability Detection using Deep
Neural Network and Transfer Learning [80.85273827468063]
既存の機械学習ベースの脆弱性検出方法は制限され、スマートコントラクトが脆弱かどうかのみ検査される。
スマートコントラクトのための初のDeep Neural Network(DNN)ベースの脆弱性検出フレームワークであるESCORTを提案する。
ESCORTは6種類の脆弱性に対して平均95%のF1スコアを達成し,検出時間は契約あたり0.02秒であることを示す。
論文 参考訳(メタデータ) (2021-03-23T15:04:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。