論文の概要: Variational Contrastive Learning for Skeleton-based Action Recognition
- arxiv url: http://arxiv.org/abs/2601.07666v1
- Date: Mon, 12 Jan 2026 15:45:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-13 19:08:01.535196
- Title: Variational Contrastive Learning for Skeleton-based Action Recognition
- Title(参考訳): 骨格に基づく行動認識のための変分コントラスト学習
- Authors: Dang Dinh Nguyen, Decky Aspandi Latif, Titus Zaharia,
- Abstract要約: 本稿では,潜在確率モデルと対照的自己教師型学習を統合した変動型コントラスト学習フレームワークを提案する。
この定式化は、異なるデータセットと監督レベルにまたがって一般化される構造化および意味論的意味のある表現の学習を可能にする。
- 参考スコア(独自算出の注目度): 1.5819414178363573
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, self-supervised representation learning for skeleton-based action recognition has advanced with the development of contrastive learning methods. However, most of contrastive paradigms are inherently discriminative and often struggle to capture the variability and uncertainty intrinsic to human motion. To address this issue, we propose a variational contrastive learning framework that integrates probabilistic latent modeling with contrastive self-supervised learning. This formulation enables the learning of structured and semantically meaningful representations that generalize across different datasets and supervision levels. Extensive experiments on three widely used skeleton-based action recognition benchmarks show that our proposed method consistently outperforms existing approaches, particularly in low-label regimes. Moreover, qualitative analyses show that the features provided by our method are more relevant given the motion and sample characteristics, with more focus on important skeleton joints, when compared to the other methods.
- Abstract(参考訳): 近年, 骨格に基づく行動認識のための自己指導型表現学習が, コントラスト学習法の開発によって進歩している。
しかし、対照的なパラダイムのほとんどは本質的に差別的であり、人間の動きに固有の多様性と不確実性を捉えるのに苦労することが多い。
この問題に対処するために,確率論的潜在モデルと自己教師型学習を統合した変動型コントラスト学習フレームワークを提案する。
この定式化は、異なるデータセットと監督レベルにまたがって一般化される構造化および意味論的意味のある表現の学習を可能にする。
広く使われている3つの骨格に基づく行動認識ベンチマークの大規模な実験により,提案手法は既存のアプローチ,特に低ラベル状態において一貫した性能を示した。
さらに,本手法により得られた特徴が,他の方法と比較して重要な骨格接合部に着目し,運動特性と試料特性に関連があることが定性的解析により示されている。
関連論文リスト
- Feature-Based vs. GAN-Based Learning from Demonstrations: When and Why [50.191655141020505]
この調査は、デモから学ぶ機能ベースのアプローチとGANベースのアプローチの比較分析を提供する。
特徴に基づく手法とGANに基づく手法の2分法はますます曖昧になっていると我々は主張する。
論文 参考訳(メタデータ) (2025-07-08T11:45:51Z) - Explaining and Mitigating the Modality Gap in Contrastive Multimodal Learning [7.412307614007383]
マルチモーダル学習モデルは、共有表現空間を学習することにより、画像やテキストなどの様々なモダリティをブリッジするように設計されている。
これらのモデルはしばしばモダリティギャップを示し、異なるモダリティが共有表現空間内の異なる領域を占める。
トレーニング中にモダリティギャップを生じ、持続させる上で、不整合データペアと学習可能な温度パラメータの臨界的役割を同定する。
論文 参考訳(メタデータ) (2024-12-10T20:36:49Z) - Regularized Neural Ensemblers [55.15643209328513]
本研究では,正規化ニューラルネットワークをアンサンブル手法として活用することを検討する。
低多様性のアンサンブルを学習するリスクを動機として,ランダムにベースモデル予測をドロップすることで,アンサンブルモデルの正規化を提案する。
このアプローチはアンサンブル内の多様性の低い境界を提供し、過度な適合を減らし、一般化能力を向上させる。
論文 参考訳(メタデータ) (2024-10-06T15:25:39Z) - Independence Constrained Disentangled Representation Learning from Epistemological Perspective [13.51102815877287]
Disentangled Representation Learningは、データ生成プロセスにおいて意味論的に意味のある潜伏変数を識別するデータエンコーダをトレーニングすることで、ディープラーニングメソッドの説明可能性を向上させることを目的としている。
不整合表現学習の目的については合意が得られない。
本稿では,相互情報制約と独立性制約を統合した非絡み合い表現学習手法を提案する。
論文 参考訳(メタデータ) (2024-09-04T13:00:59Z) - Heterogeneous Contrastive Learning for Foundation Models and Beyond [73.74745053250619]
ビッグデータと人工知能の時代において、新しいパラダイムは、大規模な異種データをモデル化するために、対照的な自己教師付き学習を活用することである。
本調査は基礎モデルの異種コントラスト学習の現況を批判的に評価する。
論文 参考訳(メタデータ) (2024-03-30T02:55:49Z) - A Probabilistic Model Behind Self-Supervised Learning [53.64989127914936]
自己教師付き学習(SSL)では、アノテートラベルなしで補助的なタスクを通じて表現が学習される。
自己教師型学習のための生成潜在変数モデルを提案する。
対照的な方法を含む識別的SSLのいくつかのファミリーは、表現に匹敵する分布を誘導することを示した。
論文 参考訳(メタデータ) (2024-02-02T13:31:17Z) - Sample-efficient Adversarial Imitation Learning [45.400080101596956]
状態と行動表現を学習するための自己教師付き表現に基づく対向的模倣学習法を提案する。
本研究は,M MuJoCo上での既存対向模倣学習法に対して,100対の専門的状態-作用ペアに制限された設定で相対的に39%改善したことを示す。
論文 参考訳(メタデータ) (2023-03-14T12:36:01Z) - Masked Contrastive Learning for Anomaly Detection [10.499890749386676]
マスク型コントラスト学習という,タスク固有のコントラスト学習のバリエーションを提案する。
また,自己アンサンブル推論と呼ばれる新しい推論手法を提案する。
論文 参考訳(メタデータ) (2021-05-18T19:27:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。