論文の概要: Tuberculosis Screening from Cough Audio: Baseline Models, Clinical Variables, and Uncertainty Quantification
- arxiv url: http://arxiv.org/abs/2601.07969v1
- Date: Mon, 12 Jan 2026 20:04:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-14 18:27:18.928412
- Title: Tuberculosis Screening from Cough Audio: Baseline Models, Clinical Variables, and Uncertainty Quantification
- Title(参考訳): カフオーディオによる結核検診:ベースラインモデル,臨床変数,不確かさの定量化
- Authors: George P. Kafentzis, Efstratios Selisios,
- Abstract要約: 本稿では, 人工結核(TB)検出のための標準化された枠組みを提案し, 機械学習を用いて日常的に収集される臨床データについて述べる。
既存の研究は、データセット、コホート定義、特徴表現、モデルファミリー、バリデーションプロトコル、レポートされたメトリクスで大きく異なります。
我々は,いくつかの国から最近収集されたデータセットから,コークス記録と臨床メタデータを伴って,TB予測のための強力な,文書化されたベースラインを構築した。
- 参考スコア(独自算出の注目度): 0.6015898117103067
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we propose a standardized framework for automatic tuberculosis (TB) detection from cough audio and routinely collected clinical data using machine learning. While TB screening from audio has attracted growing interest, progress is difficult to measure because existing studies vary substantially in datasets, cohort definitions, feature representations, model families, validation protocols, and reported metrics. Consequently, reported gains are often not directly comparable, and it remains unclear whether improvements stem from modeling advances or from differences in data and evaluation. We address this gap by establishing a strong, well-documented baseline for TB prediction using cough recordings and accompanying clinical metadata from a recently compiled dataset from several countries. Our pipeline is reproducible end-to-end, covering feature extraction, multimodal fusion, cougher-independent evaluation, and uncertainty quantification, and it reports a consistent suite of clinically relevant metrics to enable fair comparison. We further quantify performance for cough audio-only and fused (audio + clinical metadata) models, and release the full experimental protocol to facilitate benchmarking. This baseline is intended to serve as a common reference point and to reduce methodological variance that currently holds back progress in the field.
- Abstract(参考訳): 本稿では,音声から結核を自動的に検出するための標準化された枠組みを提案し,機械学習を用いて日常的に収集される臨床データについて述べる。
オーディオからのTBスクリーニングは注目されているが、既存の研究はデータセット、コホート定義、特徴表現、モデルファミリー、バリデーションプロトコル、レポートされたメトリクスで大きく異なるため、測定は困難である。
その結果、報告された利益は直接的に比較されないことが多く、改善がモデリングの進歩によるものなのか、データと評価の違いによるものなのかははっきりしない。
このギャップに対処するためには,複数の国から最近収集されたデータセットから得られた臨床メタデータを伴って,コウ記録を用いたTB予測のための強力な文書化されたベースラインを確立する。
我々のパイプラインは再現可能なエンドツーエンドであり、特徴抽出、マルチモーダル融合、コースター非依存評価、不確実性定量化をカバーし、一貫した臨床関連指標を報告し、公正な比較を可能にする。
さらに,音声のみおよび融合(オーディオ+臨床メタデータ)モデルの性能を定量化し,ベンチマークを容易にするための完全な実験プロトコルをリリースする。
このベースラインは、共通参照ポイントとして機能し、現在フィールドの進行を遅らせる方法論的分散を減らすことを意図している。
関連論文リスト
- Differential-UMamba: Rethinking Tumor Segmentation Under Limited Data Scenarios [3.1231963031043786]
Diff-UMambaは、UNetフレームワークとmambaメカニズムを組み合わせて長距離依存関係をモデル化する新しいアーキテクチャである。
Diff-UMambaの中心部にはノイズ低減モジュールがあり、ノイズや無関係なアクティベーションを抑制するための信号差分戦略を採用している。
このアーキテクチャは、特に低データ設定において、セグメンテーションの精度と堅牢性を改善する。
論文 参考訳(メタデータ) (2025-07-24T08:23:11Z) - Reproducible Machine Learning-based Voice Pathology Detection: Introducing the Pitch Difference Feature [1.7779568951268254]
本稿では,現在公開されているSaarbr"ucken Voice Databaseを用いた音声病理診断手法を提案する。
機械学習(ML)アルゴリズムを6つ評価する - サポートベクターマシン、kネアレスト隣人、ナイーブベイズ、決定木、ランダムフォレスト、AdaBoost。
アプローチは, 女性, 男性, 合計で85.61%, 84.69%, および85.22%であった。
論文 参考訳(メタデータ) (2024-10-14T14:17:52Z) - Meta-Learners for Partially-Identified Treatment Effects Across Multiple Environments [67.80453452949303]
観察データから条件平均治療効果(CATE)を推定することは、パーソナライズされた医療など多くの応用に関係している。
ここでは、観測データが複数の環境からやってくる広範囲な環境に焦点を当てる。
任意の機械学習モデルと組み合わせて使用可能な境界を推定するために、異なるモデルに依存しない学習者(いわゆるメタ学習者)を提案する。
論文 参考訳(メタデータ) (2024-06-04T16:31:43Z) - Tuning In: Analysis of Audio Classifier Performance in Clinical Settings with Limited Data [3.0113849517062303]
本研究では,小データセットの制約を考慮した臨床環境下での音声分類のためのディープラーニングモデルの評価を行う。
我々は、DenseNetやConvNeXtを含むCNNを、ViT、SWIN、ASTといったトランスフォーマーモデルとともに分析する。
本手法は,特定の臨床データを微調整する前に,大規模データセットで事前トレーニングを行うことの利点を強調した。
論文 参考訳(メタデータ) (2024-02-07T16:41:11Z) - Beyond Images: An Integrative Multi-modal Approach to Chest X-Ray Report
Generation [47.250147322130545]
画像からテキストまでの放射線学レポート生成は,医療画像の発見を記述した放射線学レポートを自動生成することを目的としている。
既存の方法の多くは画像データのみに焦点をあてており、他の患者情報は放射線科医に公開されていない。
胸部X線レポートを生成するための多モードディープニューラルネットワークフレームワークを,非構造的臨床ノートとともにバイタルサインや症状などの構造化された患者データを統合することで提案する。
論文 参考訳(メタデータ) (2023-11-18T14:37:53Z) - LifeLonger: A Benchmark for Continual Disease Classification [59.13735398630546]
MedMNISTコレクションの連続的な疾患分類のためのベンチマークであるLifeLongerを紹介する。
タスクとクラスでの病気の漸進的な学習は、モデルをスクラッチから再トレーニングすることなく、新しいサンプルを分類する問題に対処する。
クロスドメインインクリメンタル学習は、これまで得られた知識を維持しながら、異なる機関から派生したデータセットを扱う問題に対処する。
論文 参考訳(メタデータ) (2022-04-12T12:25:05Z) - Quantification of pulmonary involvement in COVID-19 pneumonia by means
of a cascade oftwo U-nets: training and assessment on multipledatasets using
different annotation criteria [83.83783947027392]
本研究は、新型コロナウイルスの肺病変の同定、セグメント化、定量化のために人工知能(AI)を活用することを目的とする。
2つのU-netのカスケードをベースとした自動解析パイプラインLungQuantシステムを開発した。
LungQuantシステムにおけるCT-Severity Score(CT-SS)の精度も評価した。
論文 参考訳(メタデータ) (2021-05-06T10:21:28Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
医用画像分類のための関係駆動型半教師付きフレームワークを提案する。
これは、摂動下で与えられた入力の予測一貫性を促進することでラベルのないデータを利用する。
本手法は,シングルラベルおよびマルチラベル画像分類のシナリオにおいて,最先端の半教師付き学習手法よりも優れる。
論文 参考訳(メタデータ) (2020-05-15T06:57:54Z) - Predictive Modeling of ICU Healthcare-Associated Infections from
Imbalanced Data. Using Ensembles and a Clustering-Based Undersampling
Approach [55.41644538483948]
本研究は,集中治療室における危険因子の同定と医療関連感染症の予測に焦点をあてる。
感染発生率の低減に向けた意思決定を支援することを目的とする。
論文 参考訳(メタデータ) (2020-05-07T16:13:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。