論文の概要: A New Strategy for Verifying Reach-Avoid Specifications in Neural Feedback Systems
- arxiv url: http://arxiv.org/abs/2601.08065v1
- Date: Mon, 12 Jan 2026 23:20:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-14 18:27:18.977954
- Title: A New Strategy for Verifying Reach-Avoid Specifications in Neural Feedback Systems
- Title(参考訳): ニューラルフィードバックシステムにおけるリーチ回避仕様の検証
- Authors: Samuel I. Akinwande, Sydney M. Katz, Mykel J. Kochenderfer, Clark Barrett,
- Abstract要約: このようなシステムに対する後方到達可能な集合のオーバー・アンド・アンダー・近似を計算できる新しいアルゴリズムを導入する。
さらに、これらの後方アルゴリズムを確立された前方分析技術と統合し、ニューラルフィードバックシステムのための統一的な検証フレームワークを提供する。
- 参考スコア(独自算出の注目度): 21.549912728385518
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Forward reachability analysis is the predominant approach for verifying reach-avoid properties in neural feedback systems (dynamical systems controlled by neural networks). This dominance stems from the limited scalability of existing backward reachability methods. In this work, we introduce new algorithms that compute both over- and under-approximations of backward reachable sets for such systems. We further integrate these backward algorithms with established forward analysis techniques to yield a unified verification framework for neural feedback systems.
- Abstract(参考訳): フォワードリーチビリティ分析は、ニューラルネットワーク(ニューラルネットワークによって制御される力学系)におけるリーチアビド特性を検証する主要なアプローチである。
この優位性は、既存の後方到達性メソッドの限られたスケーラビリティに起因しています。
本研究では,そのようなシステムに対する後方到達可能集合のオーバー・アンダー・近似を計算できる新しいアルゴリズムを提案する。
さらに、これらの後方アルゴリズムを確立された前方分析技術と統合し、ニューラルフィードバックシステムのための統一的な検証フレームワークを提供する。
関連論文リスト
- Certified Neural Approximations of Nonlinear Dynamics [51.01318247729693]
安全クリティカルな文脈では、神経近似の使用は、基礎となるシステムとの密接性に公式な境界を必要とする。
本稿では,認証された一階述語モデルに基づく新しい,適応的で並列化可能な検証手法を提案する。
論文 参考訳(メタデータ) (2025-05-21T13:22:20Z) - Backward Reachability Analysis of Neural Feedback Loops: Techniques for
Linear and Nonlinear Systems [59.57462129637796]
本稿では,ニューラルネットワークを用いた閉ループシステムの安全性検証のための後方到達性アプローチを提案する。
フィードバックループにおけるNNの存在は、その活性化関数の非線形性や、NNモデルは一般に可逆的ではないため、ユニークな問題セットを示す。
フィードフォワードNNで表される制御ポリシを持つ線形系と非線形系のBP過近似を計算するためのフレームワークを提案する。
論文 参考訳(メタデータ) (2022-09-28T13:17:28Z) - Large-Scale Sequential Learning for Recommender and Engineering Systems [91.3755431537592]
本稿では,現在の状況に適応してパーソナライズされたランキングを提供する自動アルゴリズムの設計に焦点を当てる。
前者はSAROSと呼ばれる新しいアルゴリズムを提案し,インタラクションの順序を学習するためのフィードバックの種類を考慮に入れている。
提案手法は, 電力網の故障検出に対する初期アプローチと比較して, 統計的に有意な結果を示す。
論文 参考訳(メタデータ) (2022-05-13T21:09:41Z) - Backward Reachability Analysis for Neural Feedback Loops [40.989393438716476]
本稿では,ニューラルネットワークを用いた閉ループシステムの安全性検証のための後方到達性アプローチを提案する。
フィードバックループにおけるNNの存在は、その活性化関数の非線形性や、NNモデルは一般に可逆的ではないため、ユニークな問題セットを示す。
本稿では,BP設定した推定値を所定の時間軸上で反復的に求めるアルゴリズムを提案し,計算コストを低くすることで,保守性を最大88%削減できることを示す。
論文 参考訳(メタデータ) (2022-04-14T01:13:14Z) - Imbedding Deep Neural Networks [0.0]
ニューラルODEのような連続深度ニューラルネットワークは、非線形ベクトル値の最適制御問題の観点から、残留ニューラルネットワークの理解を再燃させた。
本稿では,ネットワークの深さを基本変数とする新しい手法を提案する。
論文 参考訳(メタデータ) (2022-01-31T22:00:41Z) - Neural Network Verification in Control [3.3123634393237706]
このチュートリアルはまず、NNの堅牢性を検証する最新のテクニックを紹介し、統一する。
その後、これらの技術は、神経フィードバックループの正式な保証を提供するように拡張される。
提案したツールは, 閉ループ到達性解析と頑健な深層強化学習を可能にする。
論文 参考訳(メタデータ) (2021-09-30T22:28:44Z) - Supervised DKRC with Images for Offline System Identification [77.34726150561087]
現代の力学系はますます非線形で複雑なものになりつつある。
予測と制御のためのコンパクトで包括的な表現でこれらのシステムをモデル化するフレームワークが必要である。
本手法は,教師付き学習手法を用いてこれらの基礎関数を学習する。
論文 参考訳(メタデータ) (2021-09-06T04:39:06Z) - Parallelization Techniques for Verifying Neural Networks [52.917845265248744]
検証問題に基づくアルゴリズムを反復的に導入し、2つの分割戦略を探索する。
また、ニューラルネットワークの検証問題を単純化するために、ニューロンアクティベーションフェーズを利用する、高度に並列化可能な前処理アルゴリズムも導入する。
論文 参考訳(メタデータ) (2020-04-17T20:21:47Z) - Reach-SDP: Reachability Analysis of Closed-Loop Systems with Neural
Network Controllers via Semidefinite Programming [19.51345816555571]
本稿では,ニューラルネットワークを用いた線形時間変化システムの安全性検証のための新しいフォワードリーチビリティ解析手法を提案する。
半有限計画法を用いて、これらの近似到達可能な集合を計算できることが示される。
提案手法は,まずディープニューラルネットワークを用いて非線形モデル予測制御器を近似し,その解析ツールを用いて閉ループシステムの有限時間到達性と制約満足度を証明した。
論文 参考訳(メタデータ) (2020-04-16T18:48:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。