論文の概要: Supervised DKRC with Images for Offline System Identification
- arxiv url: http://arxiv.org/abs/2109.02241v1
- Date: Mon, 6 Sep 2021 04:39:06 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-08 01:50:02.634114
- Title: Supervised DKRC with Images for Offline System Identification
- Title(参考訳): オフラインシステム同定のための画像付きDKRC
- Authors: Alexander Krolicki and Pierre-Yves Lavertu
- Abstract要約: 現代の力学系はますます非線形で複雑なものになりつつある。
予測と制御のためのコンパクトで包括的な表現でこれらのシステムをモデル化するフレームワークが必要である。
本手法は,教師付き学習手法を用いてこれらの基礎関数を学習する。
- 参考スコア(独自算出の注目度): 77.34726150561087
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Koopman spectral theory has provided a new perspective in the field of
dynamical systems in recent years. Modern dynamical systems are becoming
increasingly non-linear and complex, and there is a need for a framework to
model these systems in a compact and comprehensive representation for
prediction and control. The central problem in applying Koopman theory to a
system of interest is that the choice of finite-dimensional basis functions is
typically done apriori, using expert knowledge of the systems dynamics. Our
approach learns these basis functions using a supervised learning approach
where a combination of autoencoders and deep neural networks learn the basis
functions for any given system. We demonstrate this approach on a simple
pendulum example in which we obtain a linear representation of the non-linear
system and then predict the future state trajectories given some initial
conditions. We also explore how changing the input representation of the
dynamic systems time series data can impact the quality of learned basis
functions. This alternative representation is compared to the traditional raw
time series data approach to determine which method results in lower
reconstruction and prediction error of the true non-linear dynamics of the
system.
- Abstract(参考訳): クープマンスペクトル理論は近年、力学系の分野における新しい視点を提供している。
現代の力学系は非線形で複雑になりつつあり、予測と制御のためのコンパクトで包括的な表現でこれらの系をモデル化するフレームワークが必要である。
関心の体系にクープマン理論を適用する上での中心的な問題は、有限次元基底関数の選択は、システムダイナミクスの専門知識を用いて一般的に apriori で行われることである。
本手法は,任意のシステムの基底関数を自動エンコーダとディープニューラルネットワークの組み合わせで学習する教師付き学習手法を用いて,これらの基底関数を学習する。
この手法は,非線形系の線形表現を導出し,初期条件が与えられた将来の状態軌跡を予測できる単純な振り子例に対して実証する。
また、動的システムの時系列データの入力表現の変更が学習基底関数の品質に与える影響についても検討する。
この代替表現は、従来の生の時系列データアプローチと比較され、システムの真の非線形ダイナミクスの復元と予測誤差を低下させる方法を決定する。
関連論文リスト
- Learning System Dynamics without Forgetting [60.08612207170659]
未知の力学を持つ系の軌道予測は、物理学や生物学を含む様々な研究分野において重要である。
本稿では,モードスイッチンググラフODE (MS-GODE) の新たなフレームワークを提案する。
生体力学の異なる多様な系を特徴とする生体力学システムの新しいベンチマークを構築した。
論文 参考訳(メタデータ) (2024-06-30T14:55:18Z) - Adaptive Meta-Learning-Based KKL Observer Design for Nonlinear Dynamical
Systems [0.0]
本稿では,メタラーニングによる非線形力学系のオブザーバ設計に対する新しいアプローチを提案する。
システム出力の測定から情報を活用するフレームワークを導入し、さまざまなシステム条件や属性にオンライン適応可能な学習ベースのKKLオブザーバを設計する。
論文 参考訳(メタデータ) (2023-10-30T12:25:14Z) - Stretched and measured neural predictions of complex network dynamics [2.1024950052120417]
微分方程式のデータ駆動近似は、力学系のモデルを明らかにする従来の方法に代わる有望な方法である。
最近、ダイナミックスを研究する機械学習ツールとしてニューラルネットワークが採用されている。これは、データ駆動型ソリューションの検出や微分方程式の発見に使用できる。
従来の統計学習理論の限界を超えてモデルの一般化可能性を拡張することは可能であることを示す。
論文 参考訳(メタデータ) (2023-01-12T09:44:59Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
本稿では,その潜在表現内でのシステム入力の変動をキャプチャする構造付き潜在ODEモデルを提案する。
静的変数仕様に基づいて,本モデルではシステムへの入力毎の変動要因を学習し,潜在空間におけるシステム入力の影響を分離する。
論文 参考訳(メタデータ) (2022-02-25T20:00:56Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
データ駆動モデリングは、真のシステムの観測からシステムの力学の近似を学ぼうとする代替パラダイムである。
本稿では,ニューラルネットワークを用いた動的システムのモデル構築方法について検討する。
基礎的な概要に加えて、関連する文献を概説し、このモデリングパラダイムが克服すべき数値シミュレーションから最も重要な課題を概説する。
論文 参考訳(メタデータ) (2021-11-02T10:51:42Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
利用可能なデータがノイズの多い部分測定の場合,カオスダイナミクスシステムのデータ支援予測の問題を検討する。
動的システムの状態の部分的測定を用いることで、不完全な知識ベースモデルによる予測を改善するために機械学習モデルを訓練できることを示す。
論文 参考訳(メタデータ) (2021-02-15T19:56:48Z) - Knowledge-Based Learning of Nonlinear Dynamics and Chaos [3.673994921516517]
本稿では,非線形システムから観測結果に基づいて予測モデルを抽出するための普遍的な学習フレームワークを提案する。
我々のフレームワークは、非線形システムを連続時間系として自然にモデル化するため、第一原理知識を容易に組み込むことができる。
論文 参考訳(メタデータ) (2020-10-07T13:50:13Z) - Bridging the Gap: Machine Learning to Resolve Improperly Modeled
Dynamics [4.940323406667406]
本稿では,複雑な時間的挙動を示すシステムに対して,不適切にモデル化された力学を克服するためのデータ駆動型モデリング戦略を提案する。
本稿では,システムの真の力学と,不正確あるいは不適切に記述されたシステムのモデルによって与えられる力学の相違を解決するためのディープラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2020-08-23T04:57:02Z) - Neural Dynamical Systems: Balancing Structure and Flexibility in
Physical Prediction [14.788494279754481]
各種グレーボックス設定における動的モデルの学習方法であるNeural Dynamical Systems (NDS)を紹介する。
NDSはニューラルネットワークを使用してシステムの自由パラメータを推定し、残余項を予測し、将来状態を予測するために時間とともに数値的に統合する。
論文 参考訳(メタデータ) (2020-06-23T00:50:48Z) - Learning Stable Deep Dynamics Models [91.90131512825504]
状態空間全体にわたって安定することが保証される力学系を学習するためのアプローチを提案する。
このような学習システムは、単純な力学系をモデル化することができ、複雑な力学を学習するために追加の深層生成モデルと組み合わせることができることを示す。
論文 参考訳(メタデータ) (2020-01-17T00:04:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。