論文の概要: RULERS: Locked Rubrics and Evidence-Anchored Scoring for Robust LLM Evaluation
- arxiv url: http://arxiv.org/abs/2601.08654v1
- Date: Tue, 13 Jan 2026 15:31:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-14 18:27:19.260646
- Title: RULERS: Locked Rubrics and Evidence-Anchored Scoring for Robust LLM Evaluation
- Title(参考訳): RULERS:Rocked Rubrics and Evidence-Anchored Scoring for Robust LLM Evaluation
- Authors: Yihan Hong, Huaiyuan Yao, Bolin Shen, Wanpeng Xu, Hua Wei, Yushun Dong,
- Abstract要約: 本稿では,自然言語ルーブを実行可能な仕様に変換するコンパイラ・エグゼクタフレームワークであるRULERSを紹介する。
RULERSは、基準をバージョニングされた不変バンドルにコンパイルし、決定論的証拠検証による構造化復号を強制し、軽量なワッサーシュタインベースのポストホックキャリブレーションを適用する。
- 参考スコア(独自算出の注目度): 15.787947727055611
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: The LLM-as-a-Judge paradigm promises scalable rubric-based evaluation, yet aligning frozen black-box models with human standards remains a challenge due to inherent generation stochasticity. We reframe judge alignment as a criteria transfer problem and isolate three recurrent failure modes: rubric instability caused by prompt sensitivity, unverifiable reasoning that lacks auditable evidence, and scale misalignment with human grading boundaries. To address these issues, we introduce RULERS (Rubric Unification, Locking, and Evidence-anchored Robust Scoring), a compiler-executor framework that transforms natural language rubrics into executable specifications. RULERS operates by compiling criteria into versioned immutable bundles, enforcing structured decoding with deterministic evidence verification, and applying lightweight Wasserstein-based post-hoc calibration, all without updating model parameters. Extensive experiments on essay and summarization benchmarks demonstrate that RULERS significantly outperforms representative baselines in human agreement, maintains strong stability against adversarial rubric perturbations, and enables smaller models to rival larger proprietary judges. Overall, our results suggest that reliable LLM judging requires executable rubrics, verifiable evidence, and calibrated scales rather than prompt phrasing alone. Code is available at https://github.com/LabRAI/Rulers.git.
- Abstract(参考訳): LLM-as-a-Judgeパラダイムは、スケーラブルなルーリックベースの評価を約束するが、凍結したブラックボックスモデルと人間の標準との整合性は、固有の生成確率性のために依然として課題である。
我々は、判定アライメントを基準伝達問題として再編成し、3つの繰り返し故障モードを分離する。
これらの問題に対処するため,自然言語ルーブを実行可能な仕様に変換するコンパイラ・エグゼクタフレームワークであるRULERS(Rubric Unification, Locking, Evidence-anchored Robust Scoring)を紹介した。
RULERSは、基準をバージョニングされた不変バンドルにコンパイルし、決定論的証拠検証による構造化復号を強制し、軽量なWassersteinベースのポストホックキャリブレーションを適用し、全てモデルパラメータを更新することなく動作する。
エッセイと要約ベンチマークの広範な実験により、RULERSは人間の合意において代表的ベースラインを著しく上回り、敵対的ルーリック摂動に対する強い安定性を維持し、より小さなモデルでより大きなプロプライエタリな審査員に対抗できることが示されている。
以上の結果から,信頼度の高いLCM判定には,文言のみではなく,実行可能な筆跡,検証可能な証拠,校正尺度が必要であることが示唆された。
コードはhttps://github.com/LabRAI/Rulers.gitで入手できる。
関連論文リスト
- Towards Comprehensive Stage-wise Benchmarking of Large Language Models in Fact-Checking [64.97768177044355]
大規模言語モデル(LLM)は、現実のファクトチェックシステムにますます多くデプロイされている。
FactArenaは、完全に自動化されたアリーナスタイルの評価フレームワークである。
本研究では,静的クレーム検証精度とエンドツーエンドのファクトチェック能力の相違点を明らかにした。
論文 参考訳(メタデータ) (2026-01-06T02:51:56Z) - SSR: Socratic Self-Refine for Large Language Model Reasoning [78.62319252287938]
Socratic Self-Refine (SSR)は、大規模言語モデル(LLM)のきめ細かい評価と精度向上のための新しいフレームワークである。
提案したSSRはモデル応答を検証可能な(サブクエスト,サブサブアンサー)ペアに分解し,ステップレベルの信頼度推定を可能にする。
5つの推論ベンチマークと3つのLCMによる実証的な結果から、SSRは一貫して最先端の反復的自己修正ベースラインを上回っていることが分かる。
論文 参考訳(メタデータ) (2025-11-13T18:47:07Z) - When Judgment Becomes Noise: How Design Failures in LLM Judge Benchmarks Silently Undermine Validity [21.192000569821943]
我々は、厳密な目標と検証可能な構成がなければ、ベンチマークのランキングは、ほぼノイズの多い高信頼度ランキングを生成することができると論じる。
本稿では,Arena-Hard Autoが使用するELOスタイルのアグリゲーションが崩壊し,真のランキングの不確かさをマスクすることを示す。
我々の結果は、妥当性を損なう設計上の失敗を強調し、より良いスコープで信頼性に配慮したベンチマークを構築するための実用的な原則を提供する。
論文 参考訳(メタデータ) (2025-09-24T16:26:47Z) - Trusted Uncertainty in Large Language Models: A Unified Framework for Confidence Calibration and Risk-Controlled Refusal [31.458406135473805]
異種不確実性証拠を正当性の校正確率に変換する統一フレームワークUniCRを提案する。
UniCRは、温度スケーリングと適切なスコアリングを備えた軽量なキャリブレーションヘッドを学習する。
ショートフォームQA、実行テスト付きコード生成、検索強化ロングフォームQAの実験は、キャリブレーションメトリクスの一貫性のある改善を示している。
論文 参考訳(メタデータ) (2025-09-01T13:14:58Z) - CompassVerifier: A Unified and Robust Verifier for LLMs Evaluation and Outcome Reward [50.97588334916863]
評価と結果報酬のための正確で堅牢な軽量検証モデルであるCompassVerifierを開発した。
数学、知識、多種多様な推論タスクにまたがる多分野の能力を示し、様々な答えの型を処理する能力を示す。
我々は,複数のデータソースから収集したモデル出力からなるVerifierBenchベンチマークを導入し,メタエラーパターンを手動で解析してCompassVerifierを強化する。
論文 参考訳(メタデータ) (2025-08-05T17:55:24Z) - Retrieval is Not Enough: Enhancing RAG Reasoning through Test-Time Critique and Optimization [58.390885294401066]
Retrieval-augmented Generation (RAG) は知識基底型大規模言語モデル(LLM)を実現するためのパラダイムとして広く採用されている。
RAGパイプラインは、モデル推論が得られた証拠と整合性を維持するのに失敗することが多く、事実上の矛盾や否定的な結論につながる。
批判駆動アライメント(CDA)に基づく新しい反復的枠組みであるAlignRAGを提案する。
AlignRAG-autoは、動的に洗練を終了し、批判的な反復回数を事前に指定する必要がなくなる自律的な変種である。
論文 参考訳(メタデータ) (2025-04-21T04:56:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。