論文の概要: Preliminary Tests of the Anticipatory Classifier System with Hindsight Experience Replay
- arxiv url: http://arxiv.org/abs/2601.09400v1
- Date: Wed, 14 Jan 2026 11:43:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-15 18:59:20.384002
- Title: Preliminary Tests of the Anticipatory Classifier System with Hindsight Experience Replay
- Title(参考訳): 隠れた経験を再現した予測分類器システムの予備試験
- Authors: Olgierd Unold, Stanisław Franczyk,
- Abstract要約: 本稿では,予測システム(ACS2)とHindsight Experience Replay(HER)機構を新たに統合したACS2HERを紹介する。
本稿では,エージェントが目標達成に失敗した場合に,後見学習を誘発する特定のアーキテクチャ変異体を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper introduces ACS2HER, a novel integration of the Anticipatory Classifier System (ACS2) with the Hindsight Experience Replay (HER) mechanism. While ACS2 is highly effective at building cognitive maps through latent learning, its performance often stagnates in environments characterized by sparse rewards. We propose a specific architectural variant that triggers hindsight learning when the agent fails to reach its primary goal, re-labeling visited states as virtual goals to densify the learning signal. The proposed model was evaluated on two benchmarks: the deterministic \texttt{Maze 6} and the stochastic \texttt{FrozenLake}. The results demonstrate that ACS2HER significantly accelerates knowledge acquisition and environmental mastery compared to the standard ACS2. However, this efficiency gain is accompanied by increased computational overhead and a substantial expansion in classifier numerosity. This work provides the first analysis of combining anticipatory mechanisms with retrospective goal-relabeling in Learning Classifier Systems.
- Abstract(参考訳): 本稿では,予測分類システム (ACS2) と隠れ体験再生機構 (HER) を新たに統合した ACS2HER を紹介する。
ACS2は潜在学習を通して認知マップを構築するのに非常に効果的であるが、その性能はスパース報酬によって特徴づけられる環境において停滞することが多い。
エージェントが第一の目標を達成できなかった場合、後見学習を誘発し、訪問した状態を仮想目標として再ラベルし、学習信号の密度化を図る。
提案手法は, 決定論的 \texttt{Maze 6} と確率的 \texttt{FrozenLake} の2つのベンチマークで評価した。
その結果, ACS2HERは標準の ACS2 と比較して知識獲得と環境習得を著しく加速することがわかった。
しかし、この効率向上には計算オーバーヘッドの増加と、分類器数の大幅な拡大が伴う。
この研究は、学習分類システムにおける予測メカニズムと振り返り目標達成機構を組み合わせた最初の分析を提供する。
関連論文リスト
- Supervised Contrastive Machine Unlearning of Background Bias in Sonar Image Classification with Fine-Grained Explainable AI [1.4610038284393168]
音響ソナー画像解析は、物体の検出と分類において重要な役割を果たす。
高精度を実現する既存のAIモデルは、しばしば海底の特徴に過度に依存し、一般化が不十分になる。
i) 海底による背景バイアスを低減するために従来の三重項損失を拡大するTCUモジュール,(ii) 浮き彫りソナーフレームワーク(UESF) という2つの重要なモジュールを統合した新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2025-12-01T05:25:34Z) - Sycophancy Mitigation Through Reinforcement Learning with Uncertainty-Aware Adaptive Reasoning Trajectories [58.988535279557546]
適応推論トラジェクトリを用いたtextbf sycophancy Mitigation を提案する。
SMARTは,分布外の入力に対して強い性能を維持しながら,サイコファンティクスの挙動を著しく低下させることを示した。
論文 参考訳(メタデータ) (2025-09-20T17:09:14Z) - An Adversarial Approach to Evaluating the Robustness of Event Identification Models [12.862865254507179]
本稿では,事象分類の特徴を抽出する物理に基づくモーダル分解法について考察する。
得られた分類器は、その堅牢性を評価するために、逆アルゴリズムに対してテストされる。
論文 参考訳(メタデータ) (2024-02-19T18:11:37Z) - End-to-End Speech Recognition: A Survey [68.35707678386949]
本調査の目的は、E2E ASRモデルの分類とそれに対応する改善を提供することである。
E2E ASRのすべての関連する側面は、パフォーマンスとデプロイメントの機会に関する議論を伴う、この作業でカバーされている。
論文 参考訳(メタデータ) (2023-03-03T01:46:41Z) - The Overlooked Classifier in Human-Object Interaction Recognition [82.20671129356037]
クラス間の意味的相関を分類ヘッドにエンコードし,重みをHOIの言語埋め込みで初期化する。
我々は,LSE-Sign という新しい損失を,長い尾を持つデータセット上でのマルチラベル学習を強化するために提案する。
我々は,物体検出と人間のポーズを明確なマージンで求める最先端技術よりも優れた,検出不要なHOI分類を可能にする。
論文 参考訳(メタデータ) (2022-03-10T23:35:00Z) - Self-Supervised Class Incremental Learning [51.62542103481908]
既存のクラスインクリメンタルラーニング(CIL)手法は、データラベルに敏感な教師付き分類フレームワークに基づいている。
新しいクラスデータに基づいて更新する場合、それらは破滅的な忘れがちである。
本稿では,SSCILにおける自己指導型表現学習のパフォーマンスを初めて考察する。
論文 参考訳(メタデータ) (2021-11-18T06:58:19Z) - Open-Set Recognition: A Good Closed-Set Classifier is All You Need [146.6814176602689]
分類器が「ゼロ・オブ・ア・ア・ア・ベ」決定を行う能力は、閉集合クラスにおける精度と高い相関関係があることが示される。
この相関を利用して、閉セット精度を向上させることにより、クロスエントロピーOSR'ベースライン'の性能を向上させる。
また、セマンティックノベルティを検出するタスクをより尊重する新しいベンチマークを構築した。
論文 参考訳(メタデータ) (2021-10-12T17:58:59Z) - One-Shot Object Detection without Fine-Tuning [62.39210447209698]
本稿では,第1ステージのMatching-FCOSネットワークと第2ステージのStructure-Aware Relation Moduleからなる2段階モデルを提案する。
また,検出性能を効果的に向上する新たなトレーニング戦略を提案する。
提案手法は,複数のデータセット上で一貫した最先端のワンショット性能を上回る。
論文 参考訳(メタデータ) (2020-05-08T01:59:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。