論文の概要: On the Provable Suboptimality of Momentum SGD in Nonstationary Stochastic Optimization
- arxiv url: http://arxiv.org/abs/2601.12238v1
- Date: Sun, 18 Jan 2026 03:27:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-21 22:47:22.517923
- Title: On the Provable Suboptimality of Momentum SGD in Nonstationary Stochastic Optimization
- Title(参考訳): 非定常確率最適化における運動量SGDの確率的部分最適性について
- Authors: Sharan Sahu, Cameron J. Hogan, Martin T. Wells,
- Abstract要約: 各種段差系における均一な凸性および滑らか性の下でのグラディエントDescentの追跡性能を解析した。
本研究では,ドリフトによる追従誤差を大幅に増幅し,追従能力に明らかなペナルティを与えることを示す。
これらの結果は、動的環境における運動量の経験的不安定性に対する決定的な理論的根拠を与える。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While momentum-based acceleration has been studied extensively in deterministic optimization problems, its behavior in nonstationary environments -- where the data distribution and optimal parameters drift over time -- remains underexplored. We analyze the tracking performance of Stochastic Gradient Descent (SGD) and its momentum variants (Polyak heavy-ball and Nesterov) under uniform strong convexity and smoothness in varying stepsize regimes. We derive finite-time bounds in expectation and with high probability for the tracking error, establishing a sharp decomposition into three components: a transient initialization term, a noise-induced variance term, and a drift-induced tracking lag. Crucially, our analysis uncovers a fundamental trade-off: while momentum can suppress gradient noise, it incurs an explicit penalty on the tracking capability. We show that momentum can substantially amplify drift-induced tracking error, with amplification that becomes unbounded as the momentum parameter approaches one, formalizing the intuition that using 'stale' gradients hinders adaptation to rapid regime shifts. Complementing these upper bounds, we establish minimax lower bounds for dynamic regret under gradient-variation constraints. These lower bounds prove that the inertia-induced penalty is not an artifact of analysis but an information-theoretic barrier: in drift-dominated regimes, momentum creates an unavoidable 'inertia window' that fundamentally degrades performance. Collectively, these results provide a definitive theoretical grounding for the empirical instability of momentum in dynamic environments and delineate the precise regime boundaries where SGD provably outperforms its accelerated counterparts.
- Abstract(参考訳): 運動量に基づく加速度は決定論的最適化問題において広範囲に研究されているが、その非定常環境(時間とともにデータ分布と最適パラメータがドリフトする場所)での挙動はいまだ過小評価されている。
本研究では,SGD(Stochastic Gradient Descent)とその運動量(Polyak Heavy-ballおよびNesterov)の均一な凸性および滑らかさの下での追跡性能を解析した。
本研究では, 過渡初期化項, 雑音誘起分散項, ドリフト誘起追従遅延の3つの成分に急激な分解を定め, 追従誤差の予測と高い確率で有限時間境界を導出する。
モーメントは勾配ノイズを抑えることができるが、追跡能力に明確なペナルティをもたらす。
モーメントパラメータが1に近づくにつれてアンバウンドとなるアンバウンドにより、モーメントがドリフトによって引き起こされるトラッキング誤差を大幅に増幅できることを示し、ストール勾配を用いることで急激なシステマシフトへの適応が妨げられるという直感を定式化する。
これらの上限を補うことで、勾配変分制約の下での動的後悔に対する最小値の下限を確立する。
これらの下限は、慣性によるペナルティは分析の成果ではなく、情報理論の障壁であることを示している。
これらの結果は、動的環境における運動量の経験的不安定性に関する決定的な理論的根拠を与え、SGDが加速された状態よりも確実に優れている正確な状態境界を規定する。
関連論文リスト
- Revisiting Zeroth-Order Optimization: Minimum-Variance Two-Point Estimators and Directionally Aligned Perturbations [57.179679246370114]
乱摂動の分布は, 摂動段差がゼロになる傾向にあるため, 推定子の分散を最小限に抑える。
以上の結果から, 一定の長さを維持するのではなく, 真の勾配に方向を合わせることが可能であることが示唆された。
論文 参考訳(メタデータ) (2025-10-22T19:06:39Z) - Drift No More? Context Equilibria in Multi-Turn LLM Interactions [58.69551510148673]
コンテキストドリフト(Contexts drift)とは、ターン間のゴール一貫性のある振る舞いからモデルが出力する出力の段階的なばらつきである。
シングルターンエラーとは異なり、ドリフトは時間的に展開し、静的な評価指標では捉えにくい。
マルチターンドリフトは、避けられない崩壊というよりも、制御可能な平衡現象として理解できることを示す。
論文 参考訳(メタデータ) (2025-10-09T04:48:49Z) - Momentum Does Not Reduce Stochastic Noise in Stochastic Gradient Descent [0.6906005491572401]
ニューラルディープネットワークでは、運動量を持つ勾配降下(SGD)は、運動量を持たないSGDよりも速く収束し、より一般化できると言われている。
特に、運動量を加えることでこのバッチノイズが減少すると考えられている。
探索方向と最急降下方向の誤差として定義される雑音である探索方向雑音の効果を解析した。
論文 参考訳(メタデータ) (2024-02-04T02:48:28Z) - The Marginal Value of Momentum for Small Learning Rate SGD [20.606430391298815]
モーメントは、勾配雑音のない強い凸条件下での勾配降下の収束を加速することが知られている。
実験により、最適学習率があまり大きくない実践訓練において、運動量には最適化と一般化の両方の利点があることがわかった。
論文 参考訳(メタデータ) (2023-07-27T21:01:26Z) - Convergence of mean-field Langevin dynamics: Time and space
discretization, stochastic gradient, and variance reduction [49.66486092259376]
平均場ランゲヴィンダイナミクス(英: mean-field Langevin dynamics、MFLD)は、分布依存のドリフトを含むランゲヴィン力学の非線形一般化である。
近年の研究では、MFLDは測度空間で機能するエントロピー規則化された凸関数を地球規模で最小化することが示されている。
有限粒子近似,時間分散,勾配近似による誤差を考慮し,MFLDのカオスの均一時間伝播を示す枠組みを提供する。
論文 参考訳(メタデータ) (2023-06-12T16:28:11Z) - Implicit Bias of Gradient Descent for Logistic Regression at the Edge of
Stability [69.01076284478151]
機械学習の最適化において、勾配降下(GD)はしばしば安定性の端(EoS)で動く
本稿では,EoS系における線形分離可能なデータに対するロジスティック回帰のための定数段差GDの収束と暗黙バイアスについて検討する。
論文 参考訳(メタデータ) (2023-05-19T16:24:47Z) - Losing momentum in continuous-time stochastic optimisation [42.617042045455506]
運動量に基づく最適化アルゴリズムは 特に広まりました
本研究では、運動量を伴う勾配降下の連続時間モデルを解析する。
また、画像分類問題において畳み込みニューラルネットワークを訓練する。
論文 参考訳(メタデータ) (2022-09-08T10:46:05Z) - Beyond the Edge of Stability via Two-step Gradient Updates [49.03389279816152]
Gradient Descent(GD)は、現代の機械学習の強力な仕事場である。
GDが局所最小値を見つける能力は、リプシッツ勾配の損失に対してのみ保証される。
この研究は、2段階の勾配更新の分析を通じて、単純だが代表的でありながら、学習上の問題に焦点をあてる。
論文 参考訳(メタデータ) (2022-06-08T21:32:50Z) - Noise and Fluctuation of Finite Learning Rate Stochastic Gradient
Descent [3.0079490585515343]
勾配降下(SGD)は、消滅する学習率体制において比較的よく理解されている。
SGDとその変異体の基本特性を非退化学習率体系で研究することを提案する。
論文 参考訳(メタデータ) (2020-12-07T12:31:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。