論文の概要: Environment-Aware Code Generation: How far are We?
- arxiv url: http://arxiv.org/abs/2601.12262v1
- Date: Sun, 18 Jan 2026 04:58:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-21 22:47:22.537122
- Title: Environment-Aware Code Generation: How far are We?
- Title(参考訳): 環境に配慮したコード生成: どこまであるのか?
- Authors: Tongtong Wu, Rongyi Chen, Wenjie Du, Suyu Ma, Guilin Qi, Zhenchang Xing, Shahram Khadivi, Ramesh Periyathambi, Gholamreza Haffari,
- Abstract要約: 大規模言語モデル(LLM)がユーザの特定の環境に適した実行可能コードを確実に生成できるかどうかは不明である。
本稿では,環境対応コード生成(EACG)の最初の体系的研究について述べる。
その結果,現在のLLMは環境固有のコード生成に苦しむ一方で,環境の適合性や実行性も向上していることがわかった。
- 参考スコア(独自算出の注目度): 52.69113158357018
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent progress in large language models (LLMs) has improved code generation, but most evaluations still test isolated, small-scale code (e.g., a single function) under default or unspecified software environments. As a result, it is unclear whether LLMs can reliably generate executable code tailored to a user's specific environment. We present the first systematic study of Environment-Aware Code Generation (EACG), where generated code must be functionally correct and directly executable under arbitrary software configurations. To enable realistic evaluation, we introduce VersiBCB, a benchmark that is multi-package, execution-verified, and deprecation-aware, capturing complex and evolving environments that prior datasets often overlook. Using VersiBCB, we investigate three complementary adaptation axes: data, parameters, and cache, and develop representative strategies for each. Our results show that current LLMs struggle with environment-specific code generation, while our adaptations improve environment compatibility and executability. These findings highlight key challenges and opportunities for deploying LLMs in practical software engineering workflows.
- Abstract(参考訳): 大規模言語モデル(LLM)の最近の進歩はコード生成を改善しているが、ほとんどの評価は、既定または未定のソフトウェア環境下で、孤立した小さなコード(例えば、単一の関数)をテストしている。
その結果、LCMがユーザの特定の環境に適した実行可能コードを確実に生成できるかどうかは不明である。
本稿では,環境対応コード生成(EACG)の最初の体系的研究について述べる。
現実的な評価を実現するために,マルチパッケージ,実行検証,非推奨化を意識したベンチマークであるVersiBCBを導入する。
VersiBCBを用いて、データ、パラメータ、キャッシュの3つの相補的適応軸を調査し、それぞれの代表的戦略を開発する。
その結果,現在のLLMは環境固有のコード生成に苦しむ一方で,環境の適合性や実行性も向上していることがわかった。
これらの発見は、実用的なソフトウェアエンジニアリングワークフローにLLMをデプロイする上での重要な課題と機会を浮き彫りにしている。
関連論文リスト
- On LLM-Assisted Generation of Smart Contracts from Business Processes [0.08192907805418582]
大規模言語モデル(LLM)は、ソフトウェアの生成方法の現実を変えました。
本稿では、ビジネスプロセス記述からスマートコントラクトコードを生成するためのLCMの使用について探索的研究を行う。
以上の結果から,LLMの性能はスマートコントラクト開発に必要な信頼性に劣ることがわかった。
論文 参考訳(メタデータ) (2025-07-30T20:39:45Z) - SIMCOPILOT: Evaluating Large Language Models for Copilot-Style Code Generation [5.880496520248658]
SIMCOPILOTは、対話型"コパイロット"スタイルのコーディングアシスタントとして、大規模言語モデル(LLM)の役割をシミュレートするベンチマークである。
ベンチマークには、Java(SIMCOPILOTJ)とPython用の専用のサブベンチマークが含まれている。
論文 参考訳(メタデータ) (2025-05-21T04:59:44Z) - CodeIF: Benchmarking the Instruction-Following Capabilities of Large Language Models for Code Generation [20.013757490442064]
タスク指向の命令に準拠する大規模言語モデル(LLM)の能力を評価するために設計された最初のベンチマークであるCodeIFを紹介する。
CodeIFは関数合成、アルゴリズム命令、コード説明など幅広いタスクを含んでいる。
我々はLLMによる広範囲な実験を行い、これらの課題の要求を満たす上での強みと限界を分析した。
論文 参考訳(メタデータ) (2025-02-26T14:19:49Z) - SURGE: On the Potential of Large Language Models as General-Purpose Surrogate Code Executors [7.210032327838313]
大規模言語モデル(LLM)がコード実行予測の代理モデルとして機能するかどうかを検討する。
オープンソースおよびプロプライエタリ LLM の広範な分析を通じて,スケーリング法則,データ効率,予測精度について検討する。
計算機処理における効率的なサロゲートとしてのLCMの実現可能性に関する重要な知見を明らかにした。
論文 参考訳(メタデータ) (2025-02-16T15:38:19Z) - Codev-Bench: How Do LLMs Understand Developer-Centric Code Completion? [60.84912551069379]
Code-Development Benchmark (Codev-Bench)は、細粒度で現実世界、リポジトリレベル、開発者中心の評価フレームワークです。
Codev-Agentは、リポジトリのクローリングを自動化し、実行環境を構築し、既存のユニットテストから動的呼び出しチェーンを抽出し、データ漏洩を避けるために新しいテストサンプルを生成するエージェントベースのシステムである。
論文 参考訳(メタデータ) (2024-10-02T09:11:10Z) - What's Wrong with Your Code Generated by Large Language Models? An Extensive Study [92.62952504133926]
本研究は,3つの一般的なベンチマーク上で,3つの主要なクローズドソースLLMと6つの人気のあるオープンソースLLMの性能評価を行った。
間違ったコードに対するバグの分類を開発し、一般的なバグタイプに対する根本原因を分析した。
本稿では,自己批判を導入し,LLMが生成したコードに対する批判と修正を可能にする,新たな学習自由反復手法を提案する。
論文 参考訳(メタデータ) (2024-07-08T17:27:17Z) - On the Impacts of Contexts on Repository-Level Code Generation [5.641402231731082]
本稿ではレポジトリレベルのコード生成を評価するために設計された新しいベンチマークであるRepoExecを紹介する。
実行可能性、包括的なテストケース生成による機能的正当性、ファイル間のコンテキストの正確な利用という3つの重要な側面に注目します。
論文 参考訳(メタデータ) (2024-06-17T10:45:22Z) - Prompting Large Language Models to Tackle the Full Software Development Lifecycle: A Case Study [72.24266814625685]
DevEvalでソフトウェア開発ライフサイクル全体にわたって、大きな言語モデル(LLM)のパフォーマンスを調査します。
DevEvalは4つのプログラミング言語、複数のドメイン、高品質なデータ収集、各タスクに対して慎重に設計および検証されたメトリクスを備えている。
GPT-4を含む現在のLLMは、DevEvalで提示される課題を解決できないことが実証研究によって示されている。
論文 参考訳(メタデータ) (2024-03-13T15:13:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。