論文の概要: SIMCOPILOT: Evaluating Large Language Models for Copilot-Style Code Generation
- arxiv url: http://arxiv.org/abs/2505.21514v1
- Date: Wed, 21 May 2025 04:59:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-29 17:35:50.11379
- Title: SIMCOPILOT: Evaluating Large Language Models for Copilot-Style Code Generation
- Title(参考訳): SIMCOPILOT:コパイロットスタイルコード生成のための大規模言語モデルの評価
- Authors: Mingchao Jiang, Abhinav Jain, Sophia Zorek, Chris Jermaine,
- Abstract要約: SIMCOPILOTは、対話型"コパイロット"スタイルのコーディングアシスタントとして、大規模言語モデル(LLM)の役割をシミュレートするベンチマークである。
ベンチマークには、Java(SIMCOPILOTJ)とPython用の専用のサブベンチマークが含まれている。
- 参考スコア(独自算出の注目度): 5.880496520248658
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We introduce SIMCOPILOT, a benchmark that simulates the role of large language models (LLMs) as interactive, "copilot"-style coding assistants. Targeting both completion (finishing incomplete methods or code blocks) and infill tasks (filling missing segments within existing code), SIMCOPILOT provides a comprehensive framework for evaluating LLM coding capabilities. The benchmark comprises dedicated sub-benchmarks for Java (SIMCOPILOTJ) and Python (SIMCOPILOTP), covering diverse codebases varying in size and complexity. Our key contributions include: (a) establishing a realistic, detailed evaluation environment to assess LLM utility in practical coding scenarios, and (b) providing fine-grained analyses that address critical factors frequently overlooked by existing benchmarks, such as task-specific performance nuances, contextual understanding across code segments, and sensitivity to variable scope. Evaluations conducted across domains-including algorithms, databases, computer vision, and neural networks-offer insights into model strengths and highlight persistent challenges in maintaining logical consistency within complex dependency structures. Beyond benchmarking, our study sheds light on the current limitations of LLM-driven code generation and underscores the ongoing transition of LLMs from merely syntax-aware generators toward reliable, intelligent software development partners.
- Abstract(参考訳): 我々は,大規模言語モデル(LLM)を対話型"コパイロット"スタイルのコーディングアシスタントとしての役割をシミュレートするベンチマークであるSIMCOPILOTを紹介する。
完了(未完成のメソッドやコードブロックの終了)とインフィルタスク(既存のコードに欠落したセグメントを埋める)の両方をターゲットに、SIMCOPILOTはLLMコーディング機能を評価するための包括的なフレームワークを提供する。
ベンチマークにはJava (SIMCOPILOTJ) と Python (SIMCOPILOTP) 用の専用のサブベンチマークが含まれている。
私たちの重要なコントリビューションは以下のとおりです。
(a)実用的なコーディングシナリオにおけるLCMの実用性を評価するための現実的で詳細な評価環境を確立すること、
b) タスク固有のパフォーマンスニュアンス、コードセグメント間のコンテキスト理解、変数スコープに対する感受性など、既存のベンチマークでしばしば見過ごされる重要な要因に対処するきめ細かい分析を提供する。
モデル強度に対するアルゴリズム、データベース、コンピュータビジョン、ニューラルネットワークといった領域で実施される評価は、複雑な依存関係構造内の論理的一貫性を維持する上での永続的な課題を強調している。
ベンチマーク以外にも、我々の研究はLLM駆動コード生成の現在の限界に光を当て、単に構文認識ジェネレータから信頼性の高いインテリジェントなソフトウェア開発パートナへのLSMの継続的な移行を強調しています。
関連論文リスト
- IDA-Bench: Evaluating LLMs on Interactive Guided Data Analysis [60.32962597618861]
IDA-Benchは、多ラウンドの対話シナリオで大規模言語モデルを評価する新しいベンチマークである。
エージェント性能は、最終的な数値出力と人間由来のベースラインを比較して判断する。
最先端のコーディングエージェント(Claude-3.7-thinkingなど)でさえ50%のタスクを成功させ、シングルターンテストでは明らかでない制限を強調している。
論文 参考訳(メタデータ) (2025-05-23T09:37:52Z) - BinMetric: A Comprehensive Binary Analysis Benchmark for Large Language Models [50.17907898478795]
本稿では,バイナリ解析タスクにおける大規模言語モデルの性能評価のためのベンチマークであるBinMetricを紹介する。
BinMetricは6つの実用的なバイナリ分析タスクにわたる20の実際のオープンソースプロジェクトから得られた1000の質問で構成されている。
本ベンチマークの実証実験では, 各種LLMのバイナリ解析能力について検討し, その強度と限界を明らかにした。
論文 参考訳(メタデータ) (2025-05-12T08:54:07Z) - Computational Reasoning of Large Language Models [51.629694188014064]
textbfTuring Machine Benchは,Large Language Models(LLM)による推論プロセスの実行能力を評価するベンチマークである。
TMBenchには、自己完結型および知識に依存しない推論、最小主義的な多段階構造、制御可能な難易度、チューリングマシンに基づく理論的基礎の4つの重要な特徴が組み込まれている。
論文 参考訳(メタデータ) (2025-04-29T13:52:47Z) - CodeIF: Benchmarking the Instruction-Following Capabilities of Large Language Models for Code Generation [24.090719826360342]
我々は、コード生成シナリオ内でタスク指向の命令に従うために、LLM(Large Language Models)の能力を評価するために設計された最初のベンチマークであるCodeIFを紹介する。
我々はLLMによる広範囲な実験を行い、これらの課題の要求を満たす上での強みと限界を分析した。
論文 参考訳(メタデータ) (2025-02-26T14:19:49Z) - EpiCoder: Encompassing Diversity and Complexity in Code Generation [49.170195362149386]
既存のコード生成方法はシードデータとしてコードスニペットを使用する。
階層的なコード機能を中心に展開する,新しい機能ツリーベースの合成フレームワークを提案する。
我々のフレームワークは、生成されたコードの複雑さを正確に制御し、関数レベルの操作からマルチファイルのシナリオまで幅広い機能を実現する。
論文 参考訳(メタデータ) (2025-01-08T18:58:15Z) - Can Long-Context Language Models Subsume Retrieval, RAG, SQL, and More? [54.667202878390526]
長文言語モデル(LCLM)は、従来、検索システムやデータベースといった外部ツールに依存していたタスクへのアプローチに革命をもたらす可能性がある。
実世界のタスクのベンチマークであるLOFTを導入し、文脈内検索と推論においてLCLMの性能を評価するために設計された数百万のトークンを出力する。
以上の結果からLCLMは,これらのタスクを明示的に訓練したことがないにも関わらず,最先端の検索システムやRAGシステムと競合する驚くべき能力を示した。
論文 参考訳(メタデータ) (2024-06-19T00:28:58Z) - Prompting Large Language Models to Tackle the Full Software Development Lifecycle: A Case Study [72.24266814625685]
DevEvalでソフトウェア開発ライフサイクル全体にわたって、大きな言語モデル(LLM)のパフォーマンスを調査します。
DevEvalは4つのプログラミング言語、複数のドメイン、高品質なデータ収集、各タスクに対して慎重に設計および検証されたメトリクスを備えている。
GPT-4を含む現在のLLMは、DevEvalで提示される課題を解決できないことが実証研究によって示されている。
論文 参考訳(メタデータ) (2024-03-13T15:13:44Z) - ML-Bench: Evaluating Large Language Models and Agents for Machine Learning Tasks on Repository-Level Code [76.84199699772903]
ML-Benchは、既存のコードリポジトリを利用してタスクを実行する現実世界のプログラミングアプリケーションに根ざしたベンチマークである。
LLM(Large Language Model)とAIエージェントの両方を評価するために、事前に定義されたデプロイメント環境でLLMのテキスト-コード変換を評価するML-LLM-Benchと、Linuxサンドボックス環境でエンドツーエンドのタスク実行で自律エージェントをテストするML-Agent-Benchの2つの設定が採用されている。
論文 参考訳(メタデータ) (2023-11-16T12:03:21Z) - CodeScope: An Execution-based Multilingual Multitask Multidimensional Benchmark for Evaluating LLMs on Code Understanding and Generation [18.354576598908448]
LLM(Large Language Models)は、人間のプログラミング支援に優れた性能を発揮している。
LLMのコード理解と生成能力を評価するための既存のベンチマークは、厳しい制限に悩まされている。
実行ベース,多言語,マルチタスク,多次元評価ベンチマークであるCodeScopeを紹介する。
論文 参考訳(メタデータ) (2023-11-14T23:18:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。