論文の概要: Decoder-Free Supervoxel GNN for Accurate Brain-Tumor Localization in Multi-Modal MRI
- arxiv url: http://arxiv.org/abs/2601.14055v1
- Date: Tue, 20 Jan 2026 15:13:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-21 22:47:23.378466
- Title: Decoder-Free Supervoxel GNN for Accurate Brain-Tumor Localization in Multi-Modal MRI
- Title(参考訳): マルチモードMRIにおけるDecoder-free Supervoxel GNNによる脳波の正確な位置推定
- Authors: Andrea Protani, Marc Molina Van Den Bosch, Lorenzo Giusti, Heloisa Barbosa Da Silva, Paolo Cacace, Albert Sund Aillet, Miguel Angel Gonzalez Ballester, Friedhelm Hummel, Luigi Serio,
- Abstract要約: SVGFormerはデコーダフリーのパイプラインで、ボリュームをスーパーボクセルのセマンティックグラフに分割する。
その階層エンコーダは、パッチレベルのトランスフォーマーとスーパーボクセルレベルのグラフアテンションネットワークを組み合わせることで、リッチなノード表現を学習する。
以上の結果から,グラフベースのエンコーダのみのパラダイムが,3次元医用画像表現の正確かつ本質的に解釈可能な代替手段であることが明らかとなった。
- 参考スコア(独自算出の注目度): 1.209913077217557
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Modern vision backbones for 3D medical imaging typically process dense voxel grids through parameter-heavy encoder-decoder structures, a design that allocates a significant portion of its parameters to spatial reconstruction rather than feature learning. Our approach introduces SVGFormer, a decoder-free pipeline built upon a content-aware grouping stage that partitions the volume into a semantic graph of supervoxels. Its hierarchical encoder learns rich node representations by combining a patch-level Transformer with a supervoxel-level Graph Attention Network, jointly modeling fine-grained intra-region features and broader inter-regional dependencies. This design concentrates all learnable capacity on feature encoding and provides inherent, dual-scale explainability from the patch to the region level. To validate the framework's flexibility, we trained two specialized models on the BraTS dataset: one for node-level classification and one for tumor proportion regression. Both models achieved strong performance, with the classification model achieving a F1-score of 0.875 and the regression model a MAE of 0.028, confirming the encoder's ability to learn discriminative and localized features. Our results establish that a graph-based, encoder-only paradigm offers an accurate and inherently interpretable alternative for 3D medical image representation.
- Abstract(参考訳): 3D医療画像のための現代の視覚バックボーンは、通常、パラメータ重エンコーダデコーダ構造を通して密度の高いボクセルグリッドを処理する。
SVGFormerはコンテンツ認識型グループ化ステージ上に構築され,ボリュームをスーパーボクセルのセマンティックグラフに分割するデコーダフリーパイプラインである。
その階層エンコーダは、パッチレベルのトランスフォーマーとスーパーボクセルレベルのグラフアテンションネットワークを組み合わせることでリッチなノード表現を学習する。
この設計では、すべての学習可能なキャパシティを特徴符号化に集中させ、パッチから領域レベルまで、本質的に二重スケールの説明可能性を提供する。
フレームワークの柔軟性を検証するため,BraTSデータセット上で,ノードレベルの分類用と腫瘍比率の回帰用という,2つの特殊なモデルをトレーニングした。
どちらのモデルも高い性能を達成し、分類モデルは0.875のF1スコア、回帰モデルは0.028のMAEを達成し、エンコーダが識別的および局所的な特徴を学習できることを確認した。
以上の結果から,グラフベースのエンコーダのみのパラダイムが,3次元医用画像表現の正確かつ本質的に解釈可能な代替手段であることが明らかとなった。
関連論文リスト
- Joint Semantic and Rendering Enhancements in 3D Gaussian Modeling with Anisotropic Local Encoding [86.55824709875598]
本稿では,セマンティックとレンダリングの両方を相乗化する3次元セマンティックガウスモデリングのための統合拡張フレームワークを提案する。
従来の点雲形状符号化とは異なり、細粒度3次元形状を捉えるために異方性3次元ガウシアン・チェビシェフ記述子を導入する。
我々は、学習した形状パターンを継続的に更新するために、クロスシーンの知識伝達モジュールを使用し、より高速な収束と堅牢な表現を可能にします。
論文 参考訳(メタデータ) (2026-01-05T18:33:50Z) - Unleashing Vision Foundation Models for Coronary Artery Segmentation: Parallel ViT-CNN Encoding and Variational Fusion [12.839049648094893]
冠動脈セグメンテーションは冠動脈疾患(CAD)のコンピュータ診断に重要である
並列符号化アーキテクチャを用いて,視覚基盤モデル(VFM)のパワーを利用する新しいフレームワークを提案する。
提案手法は, 精度の高い冠動脈セグメンテーションにおいて, 最先端の手法よりも優れ, 優れた性能を発揮する。
論文 参考訳(メタデータ) (2025-07-17T09:25:00Z) - BEFUnet: A Hybrid CNN-Transformer Architecture for Precise Medical Image
Segmentation [0.0]
本稿では,医療画像の正確な分割のために,身体情報とエッジ情報の融合を強化するBEFUnetという,革新的なU字型ネットワークを提案する。
BEFUnetは、新しいローカル・クロス・アテンション・フィーチャー(LCAF)融合モジュール、新しいダブル・レベル・フュージョン(DLF)モジュール、デュアルブランチ・エンコーダの3つの主要モジュールから構成されている。
LCAFモジュールは、2つのモダリティの間に空間的に近接する特徴に対して、局所的な相互注意を選択的に行うことにより、エッジとボディの特徴を効率よく融合させる。
論文 参考訳(メタデータ) (2024-02-13T21:03:36Z) - MISSU: 3D Medical Image Segmentation via Self-distilling TransUNet [55.16833099336073]
医用画像セグメンテーションのためのトランスフォーマーベースUNetを提案する。
グローバルな意味情報と局所的な空間的詳細特徴を同時に学習する。
MISSUは従来の最先端手法よりも優れた性能を発揮する。
論文 参考訳(メタデータ) (2022-06-02T07:38:53Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
本稿では,2ストリームグラフ畳み込みネットワーク(TSGCN)を提案する。
TSGCNは3次元歯(表面)セグメンテーションにおいて最先端の方法よりも優れています。
論文 参考訳(メタデータ) (2022-04-19T10:41:09Z) - Multi-scale and Cross-scale Contrastive Learning for Semantic
Segmentation [5.281694565226513]
セグメンテーションネットワークによって抽出されたマルチスケール特徴の識別能力を高めるために,コントラスト学習を適用した。
まず、エンコーダのマルチスケール表現を共通の特徴空間にマッピングすることにより、教師付き局所言語制約の新しい形式をインスタンス化する。
論文 参考訳(メタデータ) (2022-03-25T01:24:24Z) - A Data-scalable Transformer for Medical Image Segmentation:
Architecture, Model Efficiency, and Benchmark [45.543140413399506]
MedFormerは、一般化可能な3次元医用画像セグメンテーションのために設計されたデータスケーリング可能なトランスフォーマーである。
提案手法には, 望ましい帰納バイアス, 線形複雑度を考慮した階層的モデリング, マルチスケール特徴融合の3つの要素が組み込まれている。
論文 参考訳(メタデータ) (2022-02-28T22:59:42Z) - Global Filter Networks for Image Classification [90.81352483076323]
本稿では,対数線形複雑度を持つ周波数領域における長期空間依存性を学習する,概念的に単純だが計算効率のよいアーキテクチャを提案する。
この結果から,GFNetはトランスフォーマー型モデルやCNNの効率,一般化能力,堅牢性において,非常に競争力のある代替手段となる可能性が示唆された。
論文 参考訳(メタデータ) (2021-07-01T17:58:16Z) - Spatial Dependency Networks: Neural Layers for Improved Generative Image
Modeling [79.15521784128102]
画像生成装置(デコーダ)を構築するための新しいニューラルネットワークを導入し、可変オートエンコーダ(VAE)に適用する。
空間依存ネットワーク(sdns)では、ディープニューラルネットの各レベルにおける特徴マップを空間的にコヒーレントな方法で計算する。
空間依存層による階層型vaeのデコーダの強化は密度推定を大幅に改善することを示す。
論文 参考訳(メタデータ) (2021-03-16T07:01:08Z) - TransUNet: Transformers Make Strong Encoders for Medical Image
Segmentation [78.01570371790669]
医用画像のセグメンテーションは医療システムの開発に必須の前提条件である。
様々な医療画像セグメンテーションタスクにおいて、U-Netとして知られるu字型アーキテクチャがデファクトスタンダードとなっている。
医用画像セグメンテーションの強力な代替手段として,トランスフォーマーとU-Netの両方を有効活用するTransUNetを提案する。
論文 参考訳(メタデータ) (2021-02-08T16:10:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。