論文の概要: Predicting Long-Term Self-Rated Health in Small Areas Using Ordinal Regression and Microsimulation
- arxiv url: http://arxiv.org/abs/2601.14335v1
- Date: Tue, 20 Jan 2026 11:57:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-22 21:27:50.104341
- Title: Predicting Long-Term Self-Rated Health in Small Areas Using Ordinal Regression and Microsimulation
- Title(参考訳): 日常回帰とマイクロシミュレーションによる小地域における長期自己関連健康の予測
- Authors: Seán Caulfield Curley, Karl Mason, Patrick Mannion,
- Abstract要約: オープンソースのマイクロシミュレーションはアイルランドの人口を未来に投影するために使われる。
通常の回帰は、社会的・経済的特性に基づいて個人の自己評価された健康を予測するために利用される。
将来的には、高齢化の影響が社会経済的成果の他の改善を上回る可能性があることが示される。
- 参考スコア(独自算出の注目度): 4.230271396864462
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents an approach for predicting the self-rated health of individuals in a future population utilising the individuals' socio-economic characteristics. An open-source microsimulation is used to project Ireland's population into the future where each individual is defined by a number of demographic and socio-economic characteristics. The model is disaggregated spatially at the Electoral Division level, allowing for analysis of results at that, or any broader geographical scales. Ordinal regression is utilised to predict an individual's self-rated health based on their socio-economic characteristics and this method is shown to match well to Ireland's 2022 distribution of health statuses. Due to differences in the health status distributions of the health microdata and the national data, an alignment technique is proposed to bring predictions closer to real values. It is illustrated for one potential future population that the effects of an ageing population may outweigh other improvements in socio-economic outcomes to disimprove Ireland's mean self-rated health slightly. Health modelling at this kind of granular scale could offer local authorities a chance to predict and combat health issues which may arise in their local populations in the future.
- Abstract(参考訳): 本稿では,個人の社会経済的特性を生かした将来の人口における自己評価健康の予測手法を提案する。
オープンソースのマイクロシミュレーションは、アイルランドの人口を、各個人が多くの人口統計学的および社会経済的特徴によって定義される未来に投影するために使用される。
モデルは、選挙部門レベルで空間的に分解され、それによる結果の分析や、より広い地理的スケールが可能である。
通常の回帰は、社会経済的特性に基づいて個人の自己評価健康を予測するために利用され、この方法は2022年のアイルランドの健康状態の分布とよく一致している。
健康データと全国データの健康状態分布の相違により、実際の値に近づくようにアライメント手法が提案されている。
将来的には、高齢化の影響が、アイルランドの平均的な自己評価健康をわずかに損なう社会経済的結果の他の改善を上回る可能性があることが示される。
このような粒度の健康モデリングは、将来の地元住民に起こりうる健康問題を予測し、対処する機会を地方当局に提供する可能性がある。
関連論文リスト
- Fairness in Computational Innovations: Identifying Bias in Substance Use Treatment Length of Stay Prediction Models with Policy Implications [0.477529483515826]
予測機械学習(英: Predictive Machine Learning, ML)は、医学的意思決定を強化する計算技術である。
しかし、社会的バイアスはそのようなモデルにエンコードすることができ、不利なグループの健康結果に不注意に影響を及ぼす懸念を提起する。
この問題は、物質使用障害(SUD)の治療の文脈において特に重要であり、予測モデルのバイアスは、非常に脆弱な患者の回復に大きな影響を及ぼす可能性がある。
論文 参考訳(メタデータ) (2024-12-08T06:47:23Z) - Comprehensive Equity Index (CEI): Definition and Application to Bias Evaluation in Biometrics [47.762333925222926]
本稿では,機械学習モデルのバイアス行動の定量化のための新しい指標を提案する。
顔認識システムの運用評価に焦点をあて,適用する。
論文 参考訳(メタデータ) (2024-09-03T14:19:38Z) - Agent-Based Model: Simulating a Virus Expansion Based on the Acceptance
of Containment Measures [65.62256987706128]
比較疫学モデルは、疾患の状態に基づいて個人を分類する。
我々は、適応されたSEIRDモデルと市民のための意思決定モデルを組み合わせたABMアーキテクチャを提案する。
スペイン・ア・コルナにおけるSARS-CoV-2感染症の進行状況について検討した。
論文 参考訳(メタデータ) (2023-07-28T08:01:05Z) - Evaluating the Impact of Social Determinants on Health Prediction in the
Intensive Care Unit [10.764842579064636]
健康の社会的決定因子(SDOH)は、人の健康と幸福に重要な役割を果たす。
電子健康記録に基づくリスク予測モデルの多くは、包括的なSDOH機能群を含まない。
我々の研究は、公開のEHRデータベースMIMIC-IVをドキュメント化されたSDOH機能にリンクしています。
論文 参考訳(メタデータ) (2023-05-22T01:27:51Z) - Using Geographic Location-based Public Health Features in Survival
Analysis [12.424517746493553]
本稿では,入力特徴に公衆衛生統計を取り入れた生存分析モデルの補完的改善を提案する。
地理的位置に基づく公衆衛生情報を含めると,Surveillance, Epidemiology, End Results (SEER)データセットで評価されたコンコーマンス指数の統計的に有意な改善が得られた。
生存分析における地理的位置に基づく公衆衛生機能の有用性が示唆された。
論文 参考訳(メタデータ) (2023-04-16T03:15:00Z) - Precision Medicine for the Population-The Hope and Hype of Public Health
Genomics [0.0]
PPH(Precision Public Health)は、データ駆動の、公衆衛生に対する計算的アプローチである。
過度の強調は、保存されていない少数民族や不利な地域社会を不当に害する傾向がある。
論文 参考訳(メタデータ) (2022-11-23T17:57:44Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
我々はUNcertaInTyベースのhEalth Risk Prediction(UNITE)モデルを提案する。
UNITEは、複数ソースの健康データを活用した正確な疾患リスク予測と不確実性推定を提供する。
非アルコール性脂肪肝疾患(NASH)とアルツハイマー病(AD)の実態予測タスクにおけるUNITEの評価を行った。
UNITEはAD検出のF1スコアで最大0.841点、NASH検出のPR-AUCで最大0.609点を達成し、最高のベースラインで最大19%の高パフォーマンスを達成している。
論文 参考訳(メタデータ) (2020-10-22T02:28:11Z) - Magnify Your Population: Statistical Downscaling to Augment the Spatial
Resolution of Socioeconomic Census Data [48.7576911714538]
重要社会経済的属性の詳細な推定を導出する新しい統計的ダウンスケーリング手法を提案する。
選択された社会経済変数ごとに、ランダムフォレストモデルが元の国勢調査単位に基づいて訓練され、その後、微細なグリッド化された予測を生成するために使用される。
本研究では,この手法を米国の国勢調査データに適用し,ブロック群レベルで選択された社会経済変数を,300の空間分解能のグリッドにダウンスケールする。
論文 参考訳(メタデータ) (2020-06-23T16:52:18Z) - Hemogram Data as a Tool for Decision-making in COVID-19 Management:
Applications to Resource Scarcity Scenarios [62.997667081978825]
新型コロナウイルス(COVID-19)のパンデミックは世界中の緊急対応システムに挑戦している。
本研究は, 症状患者の血液検査データから得られた機械学習モデルについて述べる。
提案されたモデルでは、新型コロナウイルスqRT-PCRの結果を、高い精度、感度、特異性で症状のある個人に予測することができる。
論文 参考訳(メタデータ) (2020-05-10T01:45:03Z) - Survival Cluster Analysis [93.50540270973927]
異なるリスクプロファイルを持つサブポピュレーションを特定するために、生存分析には未解決の必要性がある。
このニーズに対処するアプローチは、個々の成果のキャラクタリゼーションを改善する可能性が高い。
論文 参考訳(メタデータ) (2020-02-29T22:41:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。