論文の概要: Filtered 2D Contour-Based Reconstruction of 3D STL Model from CT-DICOM Images
- arxiv url: http://arxiv.org/abs/2601.14997v1
- Date: Wed, 21 Jan 2026 13:56:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-22 21:27:50.383686
- Title: Filtered 2D Contour-Based Reconstruction of 3D STL Model from CT-DICOM Images
- Title(参考訳): CT-DICOM画像による3次元STLモデルのフィルタ付き2次元輪郭モデル再構成
- Authors: K. Punnam Chandar, Y. Ravi Kumar,
- Abstract要約: 分割CT画像から2次元輪郭データポイントを抽出し、3次元STLモデルを構築する。
各画像のフィルタされた2次元輪郭点を3次元STLモデルを再構成するために、デラウネートし、層間結合する。
骨分節骨のROIの2次元輪郭データポイントから構築した3次元STLモデルについて述べる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Reconstructing a 3D Stereo-lithography (STL) Model from 2D Contours of scanned structure in Digital Imaging and Communication in Medicine (DICOM) images is crucial to understand the geometry and deformity. Computed Tomography (CT) images are processed to enhance the contrast, reduce the noise followed by smoothing. The processed CT images are segmented using thresholding technique. 2D contour data points are extracted from segmented CT images and are used to construct 3D STL Models. The 2D contour data points may contain outliers as a result of segmentation of low resolution images and the geometry of the constructed 3D structure deviate from the actual. To cope with the imperfections in segmentation process, in this work we propose to use filtered 2D contour data points to reconstruct 3D STL Model. The filtered 2D contour points of each image are delaunay triangulated and joined layer-by-layer to reconstruct the 3D STL model. The 3D STL Model reconstruction is verified on i) 2D Data points of basic shapes and ii) Region of Interest (ROI) of human pelvic bone and are presented as case studies. The 3D STL model constructed from 2D contour data points of ROI of segmented pelvic bone with and without filtering are presented. The 3D STL model reconstructed from filtered 2D data points improved the geometry of model compared to the model reconstructed without filtering 2D data points.
- Abstract(参考訳): デジタルイメージング・コミュニケーション・イン・メディカル(DICOM)画像における2次元構造の輪郭から3次元ステレオリソグラフィー(STL)モデルを構築することは,形状と変形を理解する上で重要である。
CT(Computed Tomography)画像はコントラストを高めるために処理され、ノイズを低減し、滑らかにする。
処理されたCT画像はしきい値化技術を用いてセグメント化される。
分割CT画像から2次元輪郭データポイントを抽出し、3次元STLモデルを構築する。
2D輪郭データポイントは、低解像度画像のセグメンテーションの結果、外周を含むことができ、構築された3D構造の形状は、実際のものとずれる。
本研究では,分割過程における不完全性に対処するため,フィルタ付き2次元輪郭データポイントを用いて3次元STLモデルの再構成を提案する。
各画像のフィルタされた2次元輪郭点を3次元STLモデルを再構成するために、デラウネートし、層間結合する。
3次元STLモデル再構成の検証
一 基本形状の2次元データ点
二 ヒト骨盤骨の興味領域(ROI)であって、事例研究として提示されるもの。
骨分節骨のROIの2次元輪郭データポイントから構築した3次元STLモデルについて述べる。
フィルタされた2Dデータポイントから再構成された3次元STLモデルは、2Dデータポイントをフィルタリングせずに再構成されたモデルと比較してモデルの形状を改善した。
関連論文リスト
- DINO in the Room: Leveraging 2D Foundation Models for 3D Segmentation [51.43837087865105]
大規模な画像データセットに基づいてトレーニングされた視覚基礎モデル(VFM)は、非常に高度な2D視覚認識を備えた高品質な機能を提供する。
3D画像と3Dポイントクラウドデータセットの共通利用にもかかわらず、彼らの3Dビジョンのポテンシャルは依然としてほとんど未解決のままである。
2Dファンデーションモデルの特徴を抽出し,それを3Dに投影し,最終的に3Dポイントクラウドセグメンテーションモデルに注入する,シンプルで効果的なアプローチであるDITRを導入する。
論文 参考訳(メタデータ) (2025-03-24T17:59:11Z) - Enhancing Single Image to 3D Generation using Gaussian Splatting and Hybrid Diffusion Priors [17.544733016978928]
単一の画像から3Dオブジェクトを生成するには、野生で撮影された未ポーズのRGB画像から、目に見えない景色の完全な3D形状とテクスチャを推定する必要がある。
3次元オブジェクト生成の最近の進歩は、物体の形状とテクスチャを再構築する技術を導入している。
本稿では, この限界に対応するために, 2次元拡散モデルと3次元拡散モデルとのギャップを埋めることを提案する。
論文 参考訳(メタデータ) (2024-10-12T10:14:11Z) - Repeat and Concatenate: 2D to 3D Image Translation with 3D to 3D Generative Modeling [14.341099905684844]
本稿では,2次元X線と3次元CTライクな再構成が可能な2次元-3次元画像変換法について,簡単な手法で検討する。
我々は,潜伏空間内の複数の2次元ビューにまたがる情報を統合する既存のアプローチが,潜伏符号化中に貴重な信号情報を失うことを観察する。代わりに,2次元ビューを高チャネルの3次元ボリュームに繰り返して,簡単な3次元から3次元生成モデル問題として3次元再構成課題にアプローチする。
この方法では、再構成された3Dボリュームが、2D入力から貴重な情報を保持でき、Swin Uのチャネル状態間で渡される。
論文 参考訳(メタデータ) (2024-06-26T15:18:20Z) - GeoGS3D: Single-view 3D Reconstruction via Geometric-aware Diffusion Model and Gaussian Splatting [81.03553265684184]
単視点画像から詳細な3Dオブジェクトを再構成するフレームワークであるGeoGS3Dを紹介する。
本稿では,GDS(Gaussian Divergence Significance)という新しい指標を提案する。
実験により、GeoGS3Dはビュー間で高い一貫性を持つ画像を生成し、高品質な3Dオブジェクトを再構成することを示した。
論文 参考訳(メタデータ) (2024-03-15T12:24:36Z) - Geometry-Aware Attenuation Learning for Sparse-View CBCT Reconstruction [53.93674177236367]
Cone Beam Computed Tomography (CBCT) は臨床画像撮影において重要な役割を担っている。
従来の方法では、高品質な3D CBCT画像の再構成には数百の2次元X線投影が必要である。
これにより、放射線線量を減らすため、スパースビューCBCT再構成への関心が高まっている。
本稿では,この問題を解決するために,新しい幾何対応エンコーダデコーダフレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-26T14:38:42Z) - 3D object reconstruction and 6D-pose estimation from 2D shape for
robotic grasping of objects [2.330913682033217]
本研究では,2次元画像からの3次元オブジェクト再構成と6次元位置推定手法を提案する。
2次元画像から直接変換パラメータを計算することにより、登録プロセスに必要な自由パラメータの数を削減できる。
ロボット実験では、オブジェクトの把握が成功し、実際の環境でのユーザビリティが実証される。
論文 参考訳(メタデータ) (2022-03-02T11:58:35Z) - Spatial Context-Aware Self-Attention Model For Multi-Organ Segmentation [18.76436457395804]
マルチ組織セグメンテーションは、医学画像解析におけるディープラーニングの最も成功した応用の1つである。
深部畳み込みニューラルネット(CNN)は,CT画像やMRI画像上で臨床応用画像のセグメンテーション性能を達成する上で非常に有望である。
本研究では,高分解能2次元畳み込みによりセグメンテーションを実現する3次元モデルと2次元モデルを組み合わせた新しい枠組みを提案する。
論文 参考訳(メタデータ) (2020-12-16T21:39:53Z) - Cylinder3D: An Effective 3D Framework for Driving-scene LiDAR Semantic
Segmentation [87.54570024320354]
大規模運転シーンのLiDARセマンティックセマンティックセグメンテーションのための最先端の手法は、しばしば2D空間の点雲を投影して処理する。
3D-to-2Dプロジェクションの問題に取り組むための簡単な解決策は、3D表現を保ち、3D空間の点を処理することである。
我々は3次元シリンダー分割と3次元シリンダー畳み込みに基づくフレームワークをCylinder3Dとして開発し,3次元トポロジの関係と運転シーンの点雲の構造を利用する。
論文 参考訳(メタデータ) (2020-08-04T13:56:19Z) - Towards Realistic 3D Embedding via View Alignment [53.89445873577063]
本稿では,3次元モデルを2次元背景画像に現実的に,かつ自動的に埋め込み,新たな画像を構成する,革新的なビューアライメントGAN(VA-GAN)を提案する。
VA-GANはテクスチャジェネレータとディファレンシャルディスクリミネーターで構成され、相互接続され、エンドツーエンドのトレーニングが可能である。
論文 参考訳(メタデータ) (2020-07-14T14:45:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。