論文の概要: Automated Rubrics for Reliable Evaluation of Medical Dialogue Systems
- arxiv url: http://arxiv.org/abs/2601.15161v1
- Date: Wed, 21 Jan 2026 16:40:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-22 21:27:50.459011
- Title: Automated Rubrics for Reliable Evaluation of Medical Dialogue Systems
- Title(参考訳): 医療対話システムの信頼性評価のための自動ルーブリック
- Authors: Yinzhu Chen, Abdine Maiga, Hossein A. Rahmani, Emine Yilmaz,
- Abstract要約: 大規模言語モデル(LLM)は、幻覚や安全でない提案が患者の安全に直接的なリスクをもたらすという、臨床的な意思決定支援にますます利用されている。
本稿では,インスタンス固有の評価ルーリックの自動生成を目的とした検索拡張型マルチエージェントフレームワークを提案する。
- 参考スコア(独自算出の注目度): 19.880569341968023
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) are increasingly used for clinical decision support, where hallucinations and unsafe suggestions may pose direct risks to patient safety. These risks are particularly challenging as they often manifest as subtle clinical errors that evade detection by generic metrics, while expert-authored fine-grained rubrics remain costly to construct and difficult to scale. In this paper, we propose a retrieval-augmented multi-agent framework designed to automate the generation of instance-specific evaluation rubrics. Our approach grounds evaluation in authoritative medical evidence by decomposing retrieved content into atomic facts and synthesizing them with user interaction constraints to form verifiable, fine-grained evaluation criteria. Evaluated on HealthBench, our framework achieves a Clinical Intent Alignment (CIA) score of 60.12%, a statistically significant improvement over the GPT-4o baseline (55.16%). In discriminative tests, our rubrics yield a mean score delta ($μ_Δ = 8.658$) and an AUROC of 0.977, nearly doubling the quality separation achieved by GPT-4o baseline (4.972). Beyond evaluation, our rubrics effectively guide response refinement, improving quality by 9.2% (from 59.0% to 68.2%). This provides a scalable and transparent foundation for both evaluating and improving medical LLMs. The code is available at https://anonymous.4open.science/r/Automated-Rubric-Generation-AF3C/.
- Abstract(参考訳): 大規模言語モデル(LLM)は、幻覚や安全でない提案が患者の安全に直接的なリスクをもたらすという、臨床的な意思決定支援にますます利用されている。
これらのリスクは、一般的なメトリクスによる検出を避けるための微妙な臨床エラーとしてしばしば現れるため、特に困難である。
本稿では,インスタンス固有の評価ルーリックの自動生成を目的とした検索拡張型マルチエージェントフレームワークを提案する。
提案手法は,検索したコンテンツをアトミックな事実に分解し,ユーザインタラクションの制約で合成し,検証可能な,きめ細かな評価基準を形成することによって,信頼できる医療証拠の評価を基礎とする。
当フレームワークはHealthBenchで評価され,GPT-4oベースライン(55.16%)に対して統計的に有意な改善が得られた。
判別試験では, 平均スコア差(μ_Δ = 8.658$) と 0.977 の AUROC が GPT-4o ベースライン (4.972) で達成された品質分離をほぼ2倍にしている。
評価の他に、我々の潤滑剤は応答改善を効果的にガイドし、品質を9.2%向上させた(59.0%から68.2%)。
これは、医療用LLMの評価と改善のためのスケーラブルで透明な基盤を提供する。
コードはhttps://anonymous.4open.science/r/Automated-Rubric-Generation-AF3C/で公開されている。
関連論文リスト
- A DeepSeek-Powered AI System for Automated Chest Radiograph Interpretation in Clinical Practice [83.11942224668127]
Janus-Pro-CXR (1B) はDeepSeek Janus-Proモデルに基づく胸部X線解釈システムである。
本システムは, 自動レポート生成において, 最先端のX線レポート生成モデルより優れる。
論文 参考訳(メタデータ) (2025-12-23T13:26:13Z) - WER is Unaware: Assessing How ASR Errors Distort Clinical Understanding in Patient Facing Dialogue [3.468314243424983]
ASR(Automatic Speech Recognition)は、臨床対話においてますます普及している。
標準評価は依然としてエラーエラー率(WER)に大きく依存している。
本稿では、WERや他の一般的な指標が転写誤りの臨床的影響と相関するかどうかを基準として検討する。
論文 参考訳(メタデータ) (2025-11-20T16:59:20Z) - DispatchMAS: Fusing taxonomy and artificial intelligence agents for emergency medical services [49.70819009392778]
大規模言語モデル (LLM) とマルチエージェントシステム (MAS) は、ディスパッチを増強する機会を提供する。
本研究の目的は,現実的なシナリオをシミュレートする分類基盤型マルチエージェントシステムの開発と評価である。
論文 参考訳(メタデータ) (2025-10-24T08:01:21Z) - EchoBench: Benchmarking Sycophancy in Medical Large Vision-Language Models [82.43729208063468]
医療用LVLM(Large Vision-Language Models)の最近のベンチマークでは、信頼性と安全性を見越して、リーダボードの精度を強調している。
ユーザが提供した情報を非批判的に反響させる傾向のモデルについて検討する。
医療用LVLMの梅毒を系統的に評価するベンチマークであるEchoBenchを紹介する。
論文 参考訳(メタデータ) (2025-09-24T14:09:55Z) - From Scores to Steps: Diagnosing and Improving LLM Performance in Evidence-Based Medical Calculations [45.414878840652115]
大規模言語モデル(LLM)は医療ベンチマークで有望な性能を示した。
しかし、医学的な計算を行う能力は未熟であり、評価も不十分である。
本研究は,臨床信頼性を重視した医療計算評価を再考する。
論文 参考訳(メタデータ) (2025-09-20T09:10:26Z) - Beyond Benchmarks: Dynamic, Automatic And Systematic Red-Teaming Agents For Trustworthy Medical Language Models [87.66870367661342]
大規模言語モデル(LLM)は、医療におけるAIアプリケーションで使用される。
LLMを継続的にストレステストするレッドチームフレームワークは、4つのセーフティクリティカルなドメインで重大な弱点を明らかにすることができる。
敵エージェントのスイートは、自律的に変化するテストケースに適用され、安全でないトリガー戦略を特定し、評価する。
私たちのフレームワークは、進化可能でスケーラブルで信頼性の高い、次世代の医療AIのセーフガードを提供します。
論文 参考訳(メタデータ) (2025-07-30T08:44:22Z) - Benchmarking Chinese Medical LLMs: A Medbench-based Analysis of Performance Gaps and Hierarchical Optimization Strategies [11.0505830548286]
本研究は,MedBench上の上位10モデルの系統的解析を通じて,粒度の誤差分類を導入する。
10つの主要なモデルの評価は、医療知識のリコールにおいて0.86の精度を達成したにもかかわらず、脆弱性を明らかにしている。
知識境界法と多段階推論の体系的弱点を明らかにする。
論文 参考訳(メタデータ) (2025-03-10T13:28:25Z) - GEMA-Score: Granular Explainable Multi-Agent Scoring Framework for Radiology Report Evaluation [7.838068874909676]
Granular Explainable Multi-Agent Score (GEMA-Score)は、大規模言語モデルに基づくマルチエージェントワークフローを通じて、客観的および主観的評価を行う。
GEMA-Scoreは、公開データセット上での人間の専門家評価と最も高い相関を達成している。
論文 参考訳(メタデータ) (2025-03-07T11:42:22Z) - Quantifying the Reasoning Abilities of LLMs on Real-world Clinical Cases [48.87360916431396]
MedR-Benchは1,453例の構造化患者のベンチマークデータセットで、推論基準を付した注釈付きである。
本稿では,3つの批判的診察勧告,診断決定,治療計画を含む枠組みを提案し,患者のケアジャーニー全体をシミュレートする。
このベンチマークを用いて、DeepSeek-R1、OpenAI-o3-mini、Gemini-2.0-Flash Thinkingなど、最先端の5つのLCMを評価した。
論文 参考訳(メタデータ) (2025-03-06T18:35:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。