論文の概要: Relative Classification Accuracy: A Calibrated Metric for Identity Consistency in Fine-Grained K-pop Face Generation
- arxiv url: http://arxiv.org/abs/2601.15560v1
- Date: Thu, 22 Jan 2026 00:58:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-23 21:37:20.461643
- Title: Relative Classification Accuracy: A Calibrated Metric for Identity Consistency in Fine-Grained K-pop Face Generation
- Title(参考訳): 相対的分類精度:細粒K-pop顔生成におけるアイデンティティ一貫性の校正基準
- Authors: Sylvey Lin, Eranki Vasistha,
- Abstract要約: Denoising Diffusion Probabilistic Models (DDPM) は高忠実度画像生成において顕著な成功を収めた。
FID や Inception Score (IS) のような標準メトリクスは、そのような特殊なコンテキストにおけるアイデンティティの不一致を検出するのに失敗することが多い。
K-pop idol face generation (32x32) のクラス・コンディショナルDDPMについて検討した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Denoising Diffusion Probabilistic Models (DDPMs) have achieved remarkable success in high-fidelity image generation. However, evaluating their semantic controllability-specifically for fine-grained, single-domain tasks-remains challenging. Standard metrics like FID and Inception Score (IS) often fail to detect identity misalignment in such specialized contexts. In this work, we investigate Class-Conditional DDPMs for K-pop idol face generation (32x32), a domain characterized by high inter-class similarity. We propose a calibrated metric, Relative Classification Accuracy (RCA), which normalizes generative performance against an oracle classifier's baseline. Our evaluation reveals a critical trade-off: while the model achieves high visual quality (FID 8.93), it suffers from severe semantic mode collapse (RCA 0.27), particularly for visually ambiguous identities. We analyze these failure modes through confusion matrices and attribute them to resolution constraints and intra-gender ambiguity. Our framework provides a rigorous standard for verifying identity consistency in conditional generative models.
- Abstract(参考訳): Denoising Diffusion Probabilistic Models (DDPM) は高忠実度画像生成において顕著な成功を収めた。
しかし、そのセマンティックな制御性の評価は、きめ細かな単一ドメインタスクに特化している。
FID や Inception Score (IS) のような標準メトリクスは、そのような特殊なコンテキストにおけるアイデンティティの不一致を検出するのに失敗することが多い。
そこで本研究では,K-pop idol face generation (32x32) のクラス・コンディショナルDDPMについて検討する。
オラクル分類器の基準値に対して生成性能を正規化する検定基準である相対分類精度(RCA)を提案する。
評価の結果,高い視覚的品質(FID 8.93)を達成できる一方で,特に視覚的不明瞭な識別において,重度セマンティックモードの崩壊(RCA 0.27)に悩まされていることが判明した。
混乱行列を用いてこれらの故障モードを解析し、解像度制約と性別内あいまいさに起因する。
我々のフレームワークは条件付き生成モデルにおけるアイデンティティの整合性を検証するための厳密な標準を提供する。
関連論文リスト
- Generative Classifiers Avoid Shortcut Solutions [84.23247217037134]
分類に対する差別的なアプローチは、しばしば、分配されるが、小さな分布シフトの下で失敗するショートカットを学習する。
生成型分類器は、主にスパイラルな特徴ではなく、コアとスパイラルの両方の全ての特徴をモデル化することでこの問題を回避することができることを示す。
拡散型および自己回帰型生成型分類器は,5つの標準画像およびテキスト分散シフトベンチマークにおいて最先端の性能を実現する。
論文 参考訳(メタデータ) (2025-12-31T18:31:46Z) - SetAD: Semi-Supervised Anomaly Learning in Contextual Sets [25.628827917857603]
半教師付き異常検出は、限られたラベル付きデータを効果的に活用することで大きな可能性を秘めている。
本研究では,半教師付きADをSet-level Anomaly Detectionタスクとして再編成する新しいフレームワークであるSetADを提案する。
頑健性とスコアの校正性を高めるため,文脈校正型異常スコアリング機構を提案する。
論文 参考訳(メタデータ) (2025-11-26T13:27:59Z) - Noise & pattern: identity-anchored Tikhonov regularization for robust structural anomaly detection [58.535473924035365]
異常検出は自動産業検査において重要な役割を担い、他の均一な視覚パターンの微妙な欠陥や稀な欠陥を識別することを目的としている。
自己教師型オートエンコーダを用いて, 破損した入力の修復を学習する構造的異常検出に取り組む。
構造欠陥を模倣した画像に人工的破壊を注入する汚職モデルを導入する。
論文 参考訳(メタデータ) (2025-11-10T15:48:50Z) - Fair Deepfake Detectors Can Generalize [51.21167546843708]
共同設立者(データ分散とモデルキャパシティ)の制御により,公正な介入による一般化が向上することを示す。
この知見を応用して, 逆正当性重み付けとサブグループワイド特徴正規化を併用し, 新たなアライメント・アライメント・アライメント・アライメント・アライメント・アライメント・アライメント・アライメント・インセンティブ・インターベンション・インベンション・インテクション(DAID)を提案する。
DAIDは、いくつかの最先端技術と比較して、公平性と一般化の両方において一貫して優れた性能を達成する
論文 参考訳(メタデータ) (2025-07-03T14:10:02Z) - Contrastive Representation Modeling for Anomaly Detection [0.21427777919040417]
本研究では,学習中の正と負の関係を再定義し,これらの特性を明示的な異常ラベルを必要とせずに促進する構造的コントラスト目的を提案する。
本フレームワークは, 産業環境における局所的異常の検出を改善するために, パッチベースの学習評価戦略を用いて拡張する。
論文 参考訳(メタデータ) (2025-01-09T10:33:16Z) - Uncertainty-Aware Label Refinement on Hypergraphs for Personalized Federated Facial Expression Recognition [58.98052764581606]
我々はhYpergraphs (AMY) 法に基づく新しい不確実性認識ラベルリファレントを開発する。
ローカルトレーニングでは、各ローカルモデルは、バックボーン、不確実性推定(UE)ブロック、および式分類(EC)ブロックで構成される。
次に、ローカルクライアントにおける標本の不確実性重みを推定するために、パーソナライズされた不確実性推定器を導入する。
論文 参考訳(メタデータ) (2025-01-03T13:59:21Z) - Counterfactual Image Generation for adversarially robust and
interpretable Classifiers [1.3859669037499769]
本稿では,GAN(Generative Adrial Networks)を基盤として,画像から画像への変換を利用した統合フレームワークを提案する。
これは、分類器と識別器を1つのモデルに組み合わせて、実際の画像をそれぞれのクラスに属性付け、生成されたイメージを「フェイク」として生成することで達成される。
モデルが敵攻撃に対するロバスト性の向上を示すことを示すとともに,判別器の「フェイクネス」値が予測の不確かさの指標となることを示す。
論文 参考訳(メタデータ) (2023-10-01T18:50:29Z) - Threshold-Consistent Margin Loss for Open-World Deep Metric Learning [42.03620337000911]
画像検索にDeep Metric Learning (DML) で使われている既存の損失は、しばしば非均一なクラス内およびクラス間表現構造に繋がる。
不整合はしばしば、商用画像検索システムを展開する際のしきい値選択過程を複雑にする。
クラス間の動作特性の分散を定量化するOPIS(Operating-Point-Inconsistency-Score)と呼ばれる,新しい分散に基づく尺度を提案する。
論文 参考訳(メタデータ) (2023-07-08T21:16:41Z) - Exploiting Sample Uncertainty for Domain Adaptive Person
Re-Identification [137.9939571408506]
各サンプルに割り当てられた擬似ラベルの信頼性を推定・活用し,ノイズラベルの影響を緩和する。
不確実性に基づく最適化は大幅な改善をもたらし、ベンチマークデータセットにおける最先端のパフォーマンスを達成します。
論文 参考訳(メタデータ) (2020-12-16T04:09:04Z) - Improving Face Recognition by Clustering Unlabeled Faces in the Wild [77.48677160252198]
極値理論に基づく新しいアイデンティティ分離法を提案する。
重なり合うラベルノイズによる問題を大幅に低減する。
制御された設定と実際の設定の両方の実験は、我々のメソッドの一貫性のある改善を示している。
論文 参考訳(メタデータ) (2020-07-14T12:26:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。