論文の概要: D-MODD: A Diffusion Model of Opinion Dynamics Derived from Online Data
- arxiv url: http://arxiv.org/abs/2601.16226v1
- Date: Fri, 16 Jan 2026 16:17:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-26 14:27:27.349096
- Title: D-MODD: A Diffusion Model of Opinion Dynamics Derived from Online Data
- Title(参考訳): D-MODD:オンラインデータから得られるオピニオンダイナミクスの拡散モデル
- Authors: Ixandra Achitouv, David Chavalarias,
- Abstract要約: 実世界の意見力学のための連続時間モデルの最初の経験的導出を示す。
観測された力学はランゲヴィン型微分方程式によってよく説明されていることを示す。
この結果から, 偏極的話題におけるオンライン意見力学は, 演算子レベルでのマルコフ的記述を許容することを示す最初の直接的な証拠が得られた。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present the first empirical derivation of a continuous-time stochastic model for real-world opinion dynamics. Using longitudinal social-media data to infer users opinion on a binary climate-change topic, we reconstruct the underlying drift and diffusion functions governing individual opinion updates. We show that the observed dynamics are well described by a Langevin-type stochastic differential equation, with persistent attractor basins and spatially sensitive drift and diffusion terms. The empirically inferred one-step transition probabilities closely reproduce the transition kernel generated from the D-MODD model we introduce. Our results provide the first direct evidence that online opinion dynamics on a polarized topic admit a Markovian description at the operator level, with empirically reconstructed transition kernels accurately reproduced by a data-driven Langevin model, bridging sociophysics, behavioral data, and complex-systems modeling.
- Abstract(参考訳): 実世界の意見力学に対する連続時間確率モデルの最初の経験的導出について述べる。
縦断的ソーシャルメディアデータを用いて,個別の意見更新を規定するドリフトと拡散関数を再構築する。
観測された力学はLangevin型確率微分方程式によってよく説明され、永続的な誘引盆地と空間的に敏感なドリフトと拡散項を持つことを示す。
D-MODDモデルから生成された遷移カーネルを、経験的に1段階の遷移確率で再現する。
本研究は,データ駆動型Langevinモデル,ブリッジング社会物理学,行動データ,複雑なシステムモデリングにより,実験的に再構成された遷移カーネルを正確に再現し,マルコフ的記述を演算子レベルで受け入れるオンライン意見力学を初めて直接的証拠として提示するものである。
関連論文リスト
- Langevin Flows for Modeling Neural Latent Dynamics [81.81271685018284]
逐次変分自動エンコーダであるLangevinFlowを導入し、潜伏変数の時間的進化をアンダーダム化したLangevin方程式で制御する。
われわれのアプローチは、慣性、減衰、学習されたポテンシャル関数、力などの物理的事前を組み込んで、ニューラルネットワークにおける自律的および非自律的プロセスの両方を表現する。
本手法は,ロレンツ誘引器によって生成される合成神経集団に対する最先端のベースラインより優れる。
論文 参考訳(メタデータ) (2025-07-15T17:57:48Z) - Consistent World Models via Foresight Diffusion [56.45012929930605]
我々は、一貫した拡散に基づく世界モデルを学習する上で重要なボトルネックは、最適下予測能力にあると主張している。
本稿では,拡散に基づく世界モデリングフレームワークであるForesight Diffusion(ForeDiff)を提案する。
論文 参考訳(メタデータ) (2025-05-22T10:01:59Z) - Dynamical Diffusion: Learning Temporal Dynamics with Diffusion Models [71.63194926457119]
動的拡散(DyDiff, Dynamical Diffusion)は, 時間的に意識された前と逆のプロセスを含む理論的に健全なフレームワークである。
科学的時間的予測、ビデオ予測、時系列予測に関する実験は、動的拡散が時間的予測タスクのパフォーマンスを一貫して改善することを示した。
論文 参考訳(メタデータ) (2025-03-02T16:10:32Z) - FlowDAS: A Stochastic Interpolant-based Framework for Data Assimilation [15.64941169350615]
データ同化(DA)は、PDEが支配するシステムの状態を推定するために、動的モデルと観測を統合する。
FlowDASは、間補体を使用して状態遷移ダイナミクスを学習する生成DAフレームワークである。
本研究では,FlowDASがモデル駆動法,ニューラル演算子,スコアベースベースラインを超える精度と物理的妥当性を示す。
論文 参考訳(メタデータ) (2025-01-13T05:03:41Z) - Latent Space Energy-based Neural ODEs [73.01344439786524]
本稿では,連続時間列を表現するために設計された新しい深部力学モデルを提案する。
マルコフ連鎖モンテカルロの最大推定値を用いてモデルを訓練する。
振動系, ビデオ, 実世界の状態系列(MuJoCo)の実験結果から, 学習可能なエネルギーベース先行モデルの方が既存のモデルより優れていることが示された。
論文 参考訳(メタデータ) (2024-09-05T18:14:22Z) - Synthetic location trajectory generation using categorical diffusion
models [50.809683239937584]
拡散モデル(DPM)は急速に進化し、合成データのシミュレーションにおける主要な生成モデルの一つとなっている。
本稿では,個人が訪れた物理的位置を表す変数列である合成個別位置軌跡(ILT)の生成にDPMを用いることを提案する。
論文 参考訳(メタデータ) (2024-02-19T15:57:39Z) - Spontaneous Symmetry Breaking in Generative Diffusion Models [6.4322891559626125]
生成拡散モデルは近年,高次元データ生成の先導的アプローチとして浮上している。
これらのモデルの力学は、生成力学を2つの異なる位相に分割する自発的対称性の破れを示す。
本稿では,より高性能でバイアスの少ない高速サンプリングを実現する可能性を持つ拡散モデルの生成力学を理解するための新しい手法を提案する。
論文 参考訳(メタデータ) (2023-05-31T09:36:34Z) - Temporal Domain Generalization with Drift-Aware Dynamic Neural Network [12.483886657900525]
ドリフト対応動的ニューラルネットワーク(DRAIN)フレームワークを用いた時間領域一般化を提案する。
具体的には、この問題を、データとモデル力学の関係を共同でモデル化するベイズ的枠組みに定式化する。
モデルパラメータとデータ分布の時間的ドリフトをキャプチャし、将来のデータなしで将来モデルを予測することができる。
論文 参考訳(メタデータ) (2022-05-21T20:01:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。