論文の概要: Efficient Gaussian process learning via subspace projections
- arxiv url: http://arxiv.org/abs/2601.16332v1
- Date: Thu, 22 Jan 2026 21:34:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-26 14:27:27.415143
- Title: Efficient Gaussian process learning via subspace projections
- Title(参考訳): 部分空間射影による効率的なガウス過程学習
- Authors: Felipe Tobar, Elsa Cazelles,
- Abstract要約: 本稿では,低次元線形投影法を用いて構築したGPの新たな訓練目標について提案する。
本稿では,PLに関連する情報損失に対する閉形式表現を提案し,単位球上のランダムな投影で低減できることを実証的に示す。
- 参考スコア(独自算出の注目度): 0.5729426778193397
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a novel training objective for GPs constructed using lower-dimensional linear projections of the data, referred to as \emph{projected likelihood} (PL). We provide a closed-form expression for the information loss related to the PL and empirically show that it can be reduced with random projections on the unit sphere. We show the superiority of the PL, in terms of accuracy and computational efficiency, over the exact GP training and the variational free energy approach to sparse GPs over different optimisers, kernels and datasets of moderately large sizes.
- Abstract(参考訳): 本稿では,データの低次元線形射影を用いて構築されたGPの新たなトレーニング目標を提案する。
本稿では,PLに関連する情報損失に対する閉形式表現を提案し,単位球上のランダムな投影で低減できることを実証的に示す。
精度と計算効率の面でPLの優位性を示し、GPトレーニングの正確さと、異なるオプティマイザ、カーネル、および適度な大きさのデータセットにまたがるばらつき自由エネルギーアプローチについて述べる。
関連論文リスト
- Optimal Transportation and Alignment Between Gaussian Measures [80.4634530260329]
最適なトランスポート(OT)とGromov-Wasserstein(GW)アライメントは、データセットの解釈可能な幾何学的フレームワークを提供する。
これらのフレームワークは計算コストが高いため、大規模アプリケーションは2次コストでガウス分布の閉形式解に依存することが多い。
この研究は、ガウス的、二次的コスト OT と内部積 GW (IGW) のアライメントを包括的に扱い、文学におけるいくつかのギャップを埋めて適用性を広げる。
論文 参考訳(メタデータ) (2025-12-03T09:01:48Z) - Gradient-Free Sequential Bayesian Experimental Design via Interacting Particle Systems [1.1549572298362782]
ベイズ最適実験設計(BOED)のための勾配のないフレームワークを逐次設定で導入する。
提案手法は,設計最適化のためのEnsemble Kalman Inversion (EKI) と,効率的な後方サンプリングのためのAffine-Invariant Langevin Dynamics (ALDI) サンプリング器を組み合わせたものである。
変分ガウスおよびパラメタライズされたラプラス近似は、期待される情報ゲインの上と下の境界を抽出できる。
論文 参考訳(メタデータ) (2025-04-17T20:16:15Z) - Computation-Aware Gaussian Processes: Model Selection And Linear-Time Inference [55.150117654242706]
我々は、1.8万のデータポイントでトレーニングされた計算対応GPのモデル選択が、1つのGPU上で数時間以内に可能であることを示す。
この研究の結果、ガウス過程は、不確実性を定量化する能力を著しく妥協することなく、大規模なデータセットで訓練することができる。
論文 参考訳(メタデータ) (2024-11-01T21:11:48Z) - Minimizing Energy Costs in Deep Learning Model Training: The Gaussian Sampling Approach [11.878350833222711]
ガウス分布からの勾配更新をサンプリングするために, em GradSamp という手法を提案する。
Em GradSampは、勾配の合理化だけでなく、エポック全体のスキップを可能にし、全体的な効率を向上させる。
我々は、標準CNNとトランスフォーマーベースモデルの多種多様なセットにまたがって、我々の仮説を厳格に検証する。
論文 参考訳(メタデータ) (2024-06-11T15:01:20Z) - Distributional Reduction: Unifying Dimensionality Reduction and Clustering with Gromov-Wasserstein [56.62376364594194]
教師なし学習は、潜在的に大きな高次元データセットの基盤構造を捉えることを目的としている。
本研究では、最適輸送のレンズの下でこれらのアプローチを再検討し、Gromov-Wasserstein問題と関係を示す。
これにより、分散還元と呼ばれる新しい一般的なフレームワークが公開され、DRとクラスタリングを特別なケースとして回復し、単一の最適化問題内でそれらに共同で対処することができる。
論文 参考訳(メタデータ) (2024-02-03T19:00:19Z) - Domain Invariant Learning for Gaussian Processes and Bayesian
Exploration [39.83530605880014]
そこで本研究では,確率を最小限に最適化したガウス過程(DIL-GP)の領域不変学習アルゴリズムを提案する。
数値実験により、複数の合成および実世界のデータセットの予測におけるDIL-GPの優位性を示す。
論文 参考訳(メタデータ) (2023-12-18T16:13:34Z) - Combating Mode Collapse in GANs via Manifold Entropy Estimation [70.06639443446545]
Generative Adversarial Networks (GAN) は、様々なタスクやアプリケーションにおいて魅力的な結果を示している。
GANのモード崩壊問題に対処するための新しいトレーニングパイプラインを提案する。
論文 参考訳(メタデータ) (2022-08-25T12:33:31Z) - Likelihood-Free Inference with Deep Gaussian Processes [70.74203794847344]
サーロゲートモデルは、シミュレータ評価の回数を減らすために、可能性のない推論に成功している。
本稿では,より不規則な対象分布を扱えるディープガウス過程(DGP)サロゲートモデルを提案する。
本実験は,DGPがマルチモーダル分布を持つ目的関数上でGPよりも優れ,単調な場合と同等の性能を維持できることを示す。
論文 参考訳(メタデータ) (2020-06-18T14:24:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。