論文の概要: Motif Diversity in Human Liver ChIP-seq Data Using MAP-Elites
- arxiv url: http://arxiv.org/abs/2601.17808v1
- Date: Sun, 25 Jan 2026 11:57:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-27 15:23:08.410562
- Title: Motif Diversity in Human Liver ChIP-seq Data Using MAP-Elites
- Title(参考訳): MAPエリートを用いたヒト肝ChIP-seqデータのモチーフ多様性
- Authors: Alejandro Medina, Mary Lauren Benton,
- Abstract要約: MAP-Elitesアルゴリズムを用いて、位置重み行列のモチーフを、確率に基づくフィットネス目標の下で進化させる。
その結果,MAP-ElitesはMEMEの最強ソリューションに匹敵する適合性を有する複数の高品質なモチーフを復元することがわかった。
- 参考スコア(独自算出の注目度): 45.88028371034407
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Motif discovery is a core problem in computational biology, traditionally formulated as a likelihood optimization task that returns a single dominant motif from a DNA sequence dataset. However, regulatory sequence data admit multiple plausible motif explanations, reflecting underlying biological heterogeneity. In this work, we frame motif discovery as a quality-diversity problem and apply the MAP-Elites algorithm to evolve position weight matrix motifs under a likelihood-based fitness objective while explicitly preserving diversity across biologically meaningful dimensions. We evaluate MAP-Elites using three complementary behavioral characterizations that capture trade-offs between motif specificity, compositional structure, coverage, and robustness. Experiments on human CTCF liver ChIP-seq data aligned to the human reference genome compare MAP-Elites against a standard motif discovery tool, MEME, under matched evaluation criteria across stratified dataset subsets. Results show that MAP-Elites recovers multiple high-quality motif variants with fitness comparable to MEME's strongest solutions while revealing structured diversity obscured by single-solution approaches.
- Abstract(参考訳): モチーフ発見は計算生物学の中核的な問題であり、伝統的にDNA配列データセットから1つの支配的なモチーフを返す可能性最適化タスクとして定式化されている。
しかし、規制シーケンスデータは、基礎となる生物学的不均一性を反映して、複数のもっともらしいモチーフの説明を許容している。
本研究では, 品質多様性問題としてのモチーフ発見を枠組み化し, MAP-Elitesアルゴリズムを用いて, 位置重み行列のモチーフを, 生物学的に有意な次元の多様性を明示的に保ちながら, 確率に基づく適合目標の下で進化させる。
モチーフ特異性, 構成構造, カバレッジ, 堅牢性のトレードオフを捉える3つの相補的行動特性を用いてMAP-Elitesを評価した。
ヒトCTCF肝のChIP-seqデータとヒトの基準ゲノムを合わせた実験は、MAP-Elitesと標準モチーフ発見ツールMEMEを、階層化されたデータセットサブセット間で一致した評価基準の下で比較した。
その結果,MAP-ElitesはMEMEの最大解に匹敵する適合性を有する複数の高品質なモチーフを復元し,単一解法で不明瞭な構造的多様性を明らかにした。
関連論文リスト
- MS-ISSM: Objective Quality Assessment of Point Clouds Using Multi-scale Implicit Structural Similarity [65.85858856481131]
点雲の非構造的で不規則な性質は、客観的品質評価(PCQA)に重大な課題をもたらす
マルチスケールインシシシット構造類似度測定(MS-ISSM)を提案する。
論文 参考訳(メタデータ) (2026-01-03T14:58:52Z) - An Interpretable Ensemble Framework for Multi-Omics Dementia Biomarker Discovery Under HDLSS Conditions [0.0]
本稿では、グラフ注意ネットワーク(GAT)、マルチOmics Variational AutoEncoder(MOVE)、Elastic-net sparse regression、Storey's False Discovery Rate(FDR)を組み合わせた新しいアンサンブル手法を提案する。
シミュレーションされたマルチオミクスデータとアルツハイマー病神経画像イニシアチブ(ADNI)データセットを用いて評価を行った。
本手法は, 優れた予測精度, 特徴選択精度, 生物学的妥当性を示す。
論文 参考訳(メタデータ) (2025-09-04T15:20:13Z) - Consistency of Feature Attribution in Deep Learning Architectures for Multi-Omics [0.36646002427839136]
マルチオミクスデータに適用した多視点深層学習モデルにおけるShapley Additive Explanations (SHAP)の使用について検討する。
SHAPによる機能ランキングは、メソッドの一貫性を評価するために様々なアーキテクチャで比較される。
本稿では,重要な生体分子の同定の堅牢性を評価する方法を提案する。
論文 参考訳(メタデータ) (2025-07-30T17:53:42Z) - GenBench: A Benchmarking Suite for Systematic Evaluation of Genomic Foundation Models [56.63218531256961]
我々はGenomic Foundation Modelsの有効性を評価するためのベンチマークスイートであるGenBenchを紹介する。
GenBenchはモジュラーで拡張可能なフレームワークを提供し、様々な最先端の方法論をカプセル化している。
本稿では,タスク固有性能におけるモデルアーキテクチャとデータセット特性の相互作用のニュアンス解析を行う。
論文 参考訳(メタデータ) (2024-06-01T08:01:05Z) - Must: Maximizing Latent Capacity of Spatial Transcriptomics Data [41.70354088000952]
本稿では,この課題に対処する新しい手法である MuST について述べる。
STデータに含まれるマルチモダリティ情報を一様潜在空間に効果的に統合し、下流の全てのタスクの基礎を提供する。
その結果, 組織やバイオマーカーの構造を正確に同定し, 保存する上で, 既存の最先端手法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2024-01-15T09:07:28Z) - Genetic InfoMax: Exploring Mutual Information Maximization in
High-Dimensional Imaging Genetics Studies [50.11449968854487]
遺伝子ワイド・アソシエーション(GWAS)は、遺伝的変異と特定の形質の関係を同定するために用いられる。
画像遺伝学の表現学習は、GWASによって引き起こされる固有の課題により、ほとんど探索されていない。
本稿では,GWAS の具体的な課題に対処するために,トランスモーダル学習フレームワーク Genetic InfoMax (GIM) を提案する。
論文 参考訳(メタデータ) (2023-09-26T03:59:21Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
診断によって誘導される画像データと遺伝データを統合し、解釈可能なバイオマーカーを提供する新しいディープニューラルネットワークアーキテクチャを提案する。
2つの機能的MRI(fMRI)パラダイムとSingle Nucleotide Polymorphism (SNP)データを含む統合失調症の集団研究で本モデルを評価した。
論文 参考訳(メタデータ) (2021-01-27T19:28:04Z) - Object-Attribute Biclustering for Elimination of Missing Genotypes in
Ischemic Stroke Genome-Wide Data [2.0236506875465863]
欠落した遺伝子型は、一般的な疾患や形質の遺伝的変異を識別するための機械学習アプローチの有効性に影響を与える可能性がある。
この問題は、異なるDNAマイクロアレイで異なる実験から遺伝子型データを収集する際に起こり、それぞれが無名(欠失)遺伝子型のパターンによって特徴づけられる。
我々は、オブジェクト-属性・ビクラスタのよく発達した概念と、二項関係の密接な部分関係に対応する形式的概念を用いる。
論文 参考訳(メタデータ) (2020-10-22T12:27:43Z) - Mycorrhiza: Genotype Assignment usingPhylogenetic Networks [2.286041284499166]
遺伝子型代入問題に対する機械学習手法であるMycorrhizaを紹介する。
提案アルゴリズムは系統ネットワークを用いて,標本間の進化的関係を符号化する特徴を設計する。
Mycorrhizaは、大きな平均固定指数(FST)を持つデータセットやハーディ・ワインバーグ平衡からの偏差で特に顕著な利得を得る。
論文 参考訳(メタデータ) (2020-10-14T02:36:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。