論文の概要: Object-Attribute Biclustering for Elimination of Missing Genotypes in
Ischemic Stroke Genome-Wide Data
- arxiv url: http://arxiv.org/abs/2010.11641v2
- Date: Sun, 25 Oct 2020 10:29:44 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-04 08:26:39.859702
- Title: Object-Attribute Biclustering for Elimination of Missing Genotypes in
Ischemic Stroke Genome-Wide Data
- Title(参考訳): Ischemic Stroke Genome-Wideデータにおける欠失遺伝子型除去のためのオブジェクト属性ビクラスタリング
- Authors: Dmitry I. Ignatov and Gennady V. Khvorykh and Andrey V. Khrunin and
Stefan Nikoli\'c and Makhmud Shaban and Elizaveta A. Petrova and Evgeniya A.
Koltsova and Fouzi Takelait and Dmitrii Egurnov
- Abstract要約: 欠落した遺伝子型は、一般的な疾患や形質の遺伝的変異を識別するための機械学習アプローチの有効性に影響を与える可能性がある。
この問題は、異なるDNAマイクロアレイで異なる実験から遺伝子型データを収集する際に起こり、それぞれが無名(欠失)遺伝子型のパターンによって特徴づけられる。
我々は、オブジェクト-属性・ビクラスタのよく発達した概念と、二項関係の密接な部分関係に対応する形式的概念を用いる。
- 参考スコア(独自算出の注目度): 2.0236506875465863
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Missing genotypes can affect the efficacy of machine learning approaches to
identify the risk genetic variants of common diseases and traits. The problem
occurs when genotypic data are collected from different experiments with
different DNA microarrays, each being characterised by its pattern of uncalled
(missing) genotypes. This can prevent the machine learning classifier from
assigning the classes correctly. To tackle this issue, we used well-developed
notions of object-attribute biclusters and formal concepts that correspond to
dense subrelations in the binary relation $\textit{patients} \times
\textit{SNPs}$. The paper contains experimental results on applying a
biclustering algorithm to a large real-world dataset collected for studying the
genetic bases of ischemic stroke. The algorithm could identify large dense
biclusters in the genotypic matrix for further processing, which in return
significantly improved the quality of machine learning classifiers. The
proposed algorithm was also able to generate biclusters for the whole dataset
without size constraints in comparison to the In-Close4 algorithm for
generation of formal concepts.
- Abstract(参考訳): 遺伝子型の欠如は、一般的な疾患や形質のリスク遺伝的変異を特定するための機械学習アプローチの有効性に影響を与える可能性がある。
この問題は、異なるDNAマイクロアレイで異なる実験から遺伝子型データを収集する際に起こり、それぞれが無名(欠失)遺伝子型のパターンによって特徴づけられる。
これにより、機械学習の分類器がクラスを正しく割り当てるのを防ぐことができる。
この問題に対処するために、我々は、オブジェクト属性ビクラスタの概念と、二項関係$\textit{ patients} \times \textit{SNPs}$の密接な部分関係に対応する形式概念をよく考案した。
本論文は,脳梗塞の遺伝的基盤を研究するために収集された大規模実世界データセットにバイクラスタ化アルゴリズムを適用する実験結果を含む。
このアルゴリズムは、さらに処理するために、ジェノタイプ行列の高密度な二クラスタを同定し、機械学習分類器の品質を大幅に向上させた。
提案手法は,in-close4アルゴリズムと比較して,サイズ制約を伴わずにデータセット全体のバイクラスタを生成することも可能であった。
関連論文リスト
- An Evolutional Neural Network Framework for Classification of Microarray Data [0.0]
本研究の目的は,遺伝的アルゴリズムとニューラルネットワークのハイブリッドモデルを用いて,情報的遺伝子のサブセット選択において問題を克服することである。
実験の結果,提案手法は,他の機械学習アルゴリズムと比較して,高い精度と最小数の選択遺伝子が示唆された。
論文 参考訳(メタデータ) (2024-11-20T13:48:40Z) - Weighted Diversified Sampling for Efficient Data-Driven Single-Cell Gene-Gene Interaction Discovery [56.622854875204645]
本稿では,遺伝子・遺伝子相互作用の探索に先進的なトランスフォーマーモデルを活用する,データ駆動型計算ツールを活用した革新的なアプローチを提案する。
新たな重み付き多様化サンプリングアルゴリズムは、データセットのたった2パスで、各データサンプルの多様性スコアを算出する。
論文 参考訳(メタデータ) (2024-10-21T03:35:23Z) - HBIC: A Biclustering Algorithm for Heterogeneous Datasets [0.0]
Biclusteringは、データマトリックス内で行と列を同時にクラスタすることを目的とした、教師なしの機械学習アプローチである。
複素異種データから有意義なビクラスタを発見することが可能な,HBICと呼ばれるビクラスタリング手法を提案する。
論文 参考訳(メタデータ) (2024-08-23T16:48:10Z) - Feature Selection via Robust Weighted Score for High Dimensional Binary
Class-Imbalanced Gene Expression Data [1.2891210250935148]
非平衡データに対する頑健な重み付けスコア (ROWSU) は, クラス不均衡問題を用いた高次元遺伝子発現二項分類における最も識別性の高い特徴を選択するために提案される。
ROWSU法の性能を6ドルの遺伝子発現データセットで評価した。
論文 参考訳(メタデータ) (2024-01-23T11:22:03Z) - Single-Cell Deep Clustering Method Assisted by Exogenous Gene
Information: A Novel Approach to Identifying Cell Types [50.55583697209676]
我々は,細胞間のトポロジ的特徴を効率的に捉えるために,注目度の高いグラフオートエンコーダを開発した。
クラスタリング過程において,両情報の集合を統合し,細胞と遺伝子の特徴を再構成し,識別的表現を生成する。
本研究は、細胞の特徴と分布に関する知見を高め、疾患の早期診断と治療の基礎となる。
論文 参考訳(メタデータ) (2023-11-28T09:14:55Z) - Genetic heterogeneity analysis using genetic algorithm and network
science [2.6166087473624318]
ゲノムワイド・アソシエーション(GWAS)は、疾患に感受性のある遺伝的変数を同定することができる。
遺伝的効果に絡み合った遺伝的変数は、しばしば低い効果サイズを示す。
本稿では,FCSNet(Feature Co-Selection Network)という,GWASのための新しい特徴選択機構を提案する。
論文 参考訳(メタデータ) (2023-08-12T01:28:26Z) - RandomSCM: interpretable ensembles of sparse classifiers tailored for
omics data [59.4141628321618]
決定規則の結合や解離に基づくアンサンブル学習アルゴリズムを提案する。
モデルの解釈可能性により、高次元データのバイオマーカー発見やパターン発見に有用である。
論文 参考訳(メタデータ) (2022-08-11T13:55:04Z) - MIRACLE: Causally-Aware Imputation via Learning Missing Data Mechanisms [82.90843777097606]
欠落データに対する因果認識型計算アルゴリズム(MIRACLE)を提案する。
MIRACLEは、欠落発生機構を同時にモデル化することにより、ベースラインの計算を反復的に洗練する。
我々は、MIRACLEが一貫してイミューテーションを改善することができることを示すために、合成および様々な公開データセットに関する広範な実験を行う。
論文 参考訳(メタデータ) (2021-11-04T22:38:18Z) - Mycorrhiza: Genotype Assignment usingPhylogenetic Networks [2.286041284499166]
遺伝子型代入問題に対する機械学習手法であるMycorrhizaを紹介する。
提案アルゴリズムは系統ネットワークを用いて,標本間の進化的関係を符号化する特徴を設計する。
Mycorrhizaは、大きな平均固定指数(FST)を持つデータセットやハーディ・ワインバーグ平衡からの偏差で特に顕著な利得を得る。
論文 参考訳(メタデータ) (2020-10-14T02:36:27Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
本研究は, 類似患者のサブグループを同定し, 数発の疾患のサブタイプ予測問題に焦点を当てた。
新しいモデルを開発するためにメタラーニング技術を導入し、関連する臨床課題から共通の経験や知識を抽出する。
我々の新しいモデルは、単純だが効果的なメタ学習マシンであるPrototypeal Networkと呼ばれる、慎重に設計されたメタラーナーに基づいて構築されている。
論文 参考訳(メタデータ) (2020-09-02T02:50:30Z) - A Novel Granular-Based Bi-Clustering Method of Deep Mining the
Co-Expressed Genes [76.84066556597342]
ビクラスタリング法は、サンプル(遺伝子)のサブセットが試験条件下で協調的に制御されるバイクラスタをマイニングするために用いられる。
残念ながら、従来の二クラスタ法はそのような二クラスタを発見するのに完全には効果がない。
本稿では,グラニュラーコンピューティングの理論を取り入れた新しい2クラスタリング手法を提案する。
論文 参考訳(メタデータ) (2020-05-12T02:04:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。