論文の概要: Self-Manager: Parallel Agent Loop for Long-form Deep Research
- arxiv url: http://arxiv.org/abs/2601.17879v1
- Date: Sun, 25 Jan 2026 15:18:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-27 15:23:08.507338
- Title: Self-Manager: Parallel Agent Loop for Long-form Deep Research
- Title(参考訳): セルフマネージャ: 長期深層研究のための並列エージェントループ
- Authors: Yilong Xu, Zhi Zheng, Xiang Long, Yujun Cai, Yiwei Wang,
- Abstract要約: 本稿では,非同期および並列実行が可能な並列エージェントループであるSelf-Managerを紹介する。
メインスレッドは複数のサブスレッドを生成し、それぞれが独立したコンテキストを持ち、Thread Control Blocksを通じて反復的に管理することができる。
DeepResearch BenchでSelf-Managerをベンチマークしました。
- 参考スコア(独自算出の注目度): 33.21617483821564
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Long-form deep research requires multi-faceted investigations over extended horizons to get a comprehensive report. When handling such complex tasks, existing agents manage context at the subtask level to overcome linear context accumulation and information loss. However, they still adhere to a single context window and sequential execution paradigm, which results in mutual interference and blocking behavior, restricting scalability and adaptability. To address this issue, this paper introduces Self-Manager, a parallel agent loop that enables asynchronous and concurrent execution. The main thread can create multiple subthreads, each with its own isolated context, and manage them iteratively through Thread Control Blocks, allowing for more focused and flexible parallel agent execution. To assess its effectiveness, we benchmark Self-Manager on DeepResearch Bench, where it consistently outperforms existing single-agent loop baselines across all metrics. Furthermore, we conduct extensive analytical experiments to demonstrate the necessity of Self-Manager's design choices, as well as its advantages in contextual capacity, efficiency, and generalization.
- Abstract(参考訳): 長期にわたる深層調査には、包括的な報告を得るためには、広範囲にわたる地平線に関する多面的な調査が必要である。
このような複雑なタスクを扱う場合、既存のエージェントはサブタスクレベルでコンテキストを管理し、線形コンテキストの蓄積と情報損失を克服する。
しかし、それでも単一のコンテキストウィンドウとシーケンシャルな実行パラダイムに固執し、相互干渉とブロッキングの振る舞いをもたらし、スケーラビリティと適応性を制限する。
本稿では,非同期および並列実行が可能な並列エージェントループであるSelf-Managerを紹介する。
メインスレッドは、それぞれ独立したコンテキストで複数のサブスレッドを生成し、Thread Control Blocksを通じて反復的に管理することで、より集中的で柔軟な並列エージェントの実行を可能にします。
その効果を評価するために、DeepResearch BenchでSelf-Managerをベンチマークしました。
さらに, セルフ・マナガーの設計選択の必要性と, 文脈的キャパシティ, 効率, 一般化における優位性を示すために, 広範囲な解析実験を行った。
関連論文リスト
- Beyond Monolithic Architectures: A Multi-Agent Search and Knowledge Optimization Framework for Agentic Search [56.78490647843876]
エージェント検索は、大規模言語モデル(LLM)が推論とツールの使用をインターリーブできるようにすることによって、複雑な情報を探すための有望なパラダイムとして登場した。
本稿では,bfM-ASKを提案する。bfM-ASK,bfM-ASK,bfM-ASK,bfM-ASK,bfM-ASK,bfM-ASK,bfM-ASK,bfM-ASK。
論文 参考訳(メタデータ) (2026-01-08T08:13:27Z) - InfiAgent: An Infinite-Horizon Framework for General-Purpose Autonomous Agents [36.740230738304525]
InfiAgentは、タスクの持続時間に関係なく、エージェントの推論コンテキストを厳密に拘束する。
20Bのオープンソースモデルを持つInfiAgentは、より大きなプロプライエタリなシステムと競合する。
論文 参考訳(メタデータ) (2026-01-06T17:35:57Z) - DeepAgent: A General Reasoning Agent with Scalable Toolsets [111.6384541877723]
DeepAgentは、自律的な思考、ツール発見、アクション実行を実行するエンドツーエンドのディープ推論エージェントである。
長期にわたる相互作用の課題に対処するために,過去の相互作用を構造化エピソード,動作,ツール記憶に圧縮する自律的メモリ折り畳み機構を導入する。
LLMシミュレートされたAPIを活用し、ツール呼び出しトークンにきめ細かいクレジットを割り当てるツールコールアドバンテージ属性を適用した、エンドツーエンドの強化学習戦略であるToolPOを開発した。
論文 参考訳(メタデータ) (2025-10-24T16:24:01Z) - Scaling Long-Horizon LLM Agent via Context-Folding [46.685552398338295]
エージェントが作業コンテキストを積極的に管理することを可能にするフレームワークであるContext-Foldingを紹介します。
エージェントは、サブトラックに手続き的に分岐してサブタスクを処理し、完了時に折り畳み、結果の簡潔な要約を保持しながら中間ステップを崩壊させる。
論文 参考訳(メタデータ) (2025-10-13T22:00:58Z) - FlashResearch: Real-time Agent Orchestration for Efficient Deep Research [62.03819662340356]
FlashResearchは効率的なディープリサーチのための新しいフレームワークです。
シーケンシャル処理を並列なランタイムオーケストレーションに変換する。
同等のクオリティを維持しつつ、最大5倍のスピードアップを提供できる。
論文 参考訳(メタデータ) (2025-10-02T00:15:39Z) - Flash-Searcher: Fast and Effective Web Agents via DAG-Based Parallel Execution [48.7788770680643]
Flash-Searcherは、新しい並列エージェント推論フレームワークである。
複雑なタスクを明示的な依存関係でサブタスクに分解し、独立した推論パスの同時実行を可能にする。
BrowseCompでは67.7%の精度で、xbench-DeepSearchでは83%、エージェントの実行手順は現在のフレームワークに比べて最大35%削減されている。
論文 参考訳(メタデータ) (2025-09-29T17:39:30Z) - Hybrid Deep Searcher: Integrating Parallel and Sequential Search Reasoning [57.78245296980122]
本稿では,自然質問から自動生成されるデータセットであるHDS-QA(Hybrid Deep Search QA)を紹介する。
並列化可能な独立サブクエリ(同時に実行可能)と逐次依存サブクエリ(ステップバイステップの解決を必要とする)を組み合わせたハイブリッドホップ質問を含む。
モデルの名称はHybridDeepSearcherで、複数のベンチマークで最先端のベースラインを上回っています。
論文 参考訳(メタデータ) (2025-08-26T15:15:17Z) - Beyond Prompts: Dynamic Conversational Benchmarking of Large Language Models [0.0]
本稿では,対話エージェントを対象とした動的ベンチマークシステムを提案する。
タスクをインターリーブするために定期的にコンテキストスイッチを行い、エージェントの長期記憶、継続的な学習、情報統合機能を評価する現実的なテストシナリオを構築します。
論文 参考訳(メタデータ) (2024-09-30T12:01:29Z) - Walking Down the Memory Maze: Beyond Context Limit through Interactive
Reading [63.93888816206071]
我々は,長いコンテキストを要約ノードのツリーに処理する手法であるMemWalkerを紹介した。クエリを受信すると,モデルがこのツリーをナビゲートして関連する情報を検索し,十分な情報を収集すると応答する。
その結果,MemWalkerは,テキストを対話的に読み取る際の推論ステップを強調し,クエリに関連するテキストセグメントをピンポイントすることで,説明性の向上を図っている。
論文 参考訳(メタデータ) (2023-10-08T06:18:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。