論文の概要: Post-selection games
- arxiv url: http://arxiv.org/abs/2601.18861v1
- Date: Mon, 26 Jan 2026 19:00:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-28 15:26:51.018801
- Title: Post-selection games
- Title(参考訳): ポストセレクションゲーム
- Authors: Víctor Calleja Rodríguez, Ivan A. Bocanegra-Garay, Mateus Araújo,
- Abstract要約: 選択後のゲームは、各ラウンドがプレイヤーによって勝ち負けできるが、審判員によって捨てられる非ローカルゲームの一般化である。
我々は、選択後ゲームの局所的および非有界なTsirelson境界を計算するためのアルゴリズムを開発する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we introduce post-selection games, a generalization of nonlocal games where each round can be not only won or lost by the players, but also discarded by the referee. Such games naturally formalize possibilistic proofs of nonlocality, such as Hardy's paradox. We develop algorithms for computing the local and Tsirelson bounds of post-selection games. Furthermore, we show that they have an unbounded advantage in statistical power over traditional nonlocal games, making them ideally suited for analysing Bell tests with low detection efficiency.
- Abstract(参考訳): 本稿では,各ラウンドがプレイヤーに勝ったり負けたりできるだけでなく,審判員に捨てられたりできる非ローカルゲームの一般化であるポストセレクションゲームを紹介する。
そのようなゲームは自然にハーディのパラドックスのような非局所性の確率的証明を定式化する。
我々は、選択後のゲームの局所的およびツィレルソン境界を計算するためのアルゴリズムを開発する。
さらに,従来の非局所ゲームよりも統計的に有利であり,検出効率の低いベルテストの解析に最適であることを示す。
関連論文リスト
- People use fast, goal-directed simulation to reason about novel games [71.0171482296852]
シンプルなが斬新なConnect-Nスタイルのボードゲームについて、人々がどう考えるかを研究する。
ゲームがどんなに公平か、そしてどんなに楽しいのかを、ごくわずかな経験から判断するよう、私たちは人々に求めます。
論文 参考訳(メタデータ) (2024-07-19T07:59:04Z) - Abstracting Imperfect Information Away from Two-Player Zero-Sum Games [85.27865680662973]
Nayyar et al. (2013) は、プレイヤーがプレイ中にポリシーを公に発表することで、不完全な情報を共通のペイオフゲームから抽象化できることを示した。
この研究は、ある正規化された平衡が上記の非対応問題を持たないことを示している。
これらの正規化された平衡はナッシュ平衡に任意に近づくことができるので、この結果は2つのプレイヤーゼロサムゲームを解くための新たな視点への扉を開く。
論文 参考訳(メタデータ) (2023-01-22T16:54:06Z) - Predicting Winning Regions in Parity Games via Graph Neural Networks
(Extended Abstract) [68.8204255655161]
グラフニューラルネットワークを用いてパリティゲームの勝利領域を決定するための不完全時間的アプローチを提案する。
これは、データセットの60%の勝利領域を正しく決定し、残りの領域で小さなエラーしか発生しない。
論文 参考訳(メタデータ) (2022-10-18T15:10:25Z) - Public Information Representation for Adversarial Team Games [31.29335755664997]
対戦チームゲームは、プレイ中にチームメンバーが利用可能な非対称情報の中にあります。
本アルゴリズムは,対戦相手を持つ逐次チームゲームから古典的な2プレイヤーゼロサムゲームに変換する。
この問題のNPハード性のため、結果のパブリックチームゲームは元のゲームよりも指数関数的に大きいかもしれない。
論文 参考訳(メタデータ) (2022-01-25T15:07:12Z) - Revisiting Game Representations: The Hidden Costs of Efficiency in
Sequential Decision-making Algorithms [0.6749750044497732]
不完全な情報の下でのシーケンシャルな意思決定アルゴリズムの進歩は、大きなゲームで顕著な成功を収めている。
これらのアルゴリズムは伝統的に広義のゲーム形式を用いてゲームを形式化する。
プレイヤー固有の情報状態木に基づく特殊表現の使用が,一般的な回避策であることを示す。
論文 参考訳(メタデータ) (2021-12-20T22:34:19Z) - Faster Algorithms for Optimal Ex-Ante Coordinated Collusive Strategies
in Extensive-Form Zero-Sum Games [123.76716667704625]
我々は,不完全情報ゼロサム拡張形式ゲームにおいて,対戦相手と対決する2人の選手のチームにとって最適な戦略を見つけることの課題に焦点をあてる。
この設定では、チームができる最善のことは、ゲーム開始時の関節(つまり相関した)確率分布から潜在的にランダム化された戦略(プレイヤー1人)のプロファイルをサンプリングすることである。
各プロファイルにランダム化されるのはチームメンバーの1人だけであるプロファイルのみを用いることで、そのような最適な分布を計算するアルゴリズムを提供する。
論文 参考訳(メタデータ) (2020-09-21T17:51:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。