論文の概要: An Empirical Evaluation of Modern MLOps Frameworks
- arxiv url: http://arxiv.org/abs/2601.20415v1
- Date: Wed, 28 Jan 2026 09:22:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-29 15:46:06.873815
- Title: An Empirical Evaluation of Modern MLOps Frameworks
- Title(参考訳): モダンMLOpsフレームワークの実証評価
- Authors: Jon Marcos-Mercadé, Unai Lopez-Novoa, Mikel Egaña Aranguren,
- Abstract要約: この研究はMLOps(Machine Learning Operations)ツールを実証的に評価し、MLモデルライフサイクルの管理を容易にする。
ツールの評価は、インストールの容易さ、柔軟性、などを評価することで行われる。
2つの一般的なMLシナリオを実装する場合、コードインスツルメンテーション、結果解釈可能性、ドキュメント化。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Given the increasing adoption of AI solutions in professional environments, it is necessary for developers to be able to make informed decisions about the current tool landscape. This work empirically evaluates various MLOps (Machine Learning Operations) tools to facilitate the management of the ML model lifecycle: MLflow, Metaflow, Apache Airflow, and Kubeflow Pipelines. The tools are evaluated by assessing the criteria of Ease of installation, Configuration flexibility, Interoperability, Code instrumentation complexity, result interpretability, and Documentation when implementing two common ML scenarios: Digit classifier with MNIST and Sentiment classifier with IMDB and BERT. The evaluation is completed by providing weighted results that lead to practical conclusions on which tools are best suited for different scenarios.
- Abstract(参考訳): プロフェッショナル環境におけるAIソリューションの採用が増加していることを考えると、開発者は現在のツールの状況について情報的な決定を下せる必要がある。
この作業はMLOps(Machine Learning Operations)ツールを経験的に評価して、MLモデルライフサイクルの管理を容易にする。
これらのツールは、MNISTによるDigit分類器とIMDBとBERTによるSentiment分類器の2つの一般的なMLシナリオを実装する際に、インストールの容易さ、構成の柔軟性、相互運用性、コードインスツルメンテーションの複雑さ、結果の解釈可能性、ドキュメンテーションの基準を評価することで評価される。
評価は、異なるシナリオに最も適したツールの実践的な結論につながる重み付けされた結果を提供することで完了する。
関連論文リスト
- Large Language Model Agent for User-friendly Chemical Process Simulations [0.0]
大規模言語モデル (LLM) エージェントは AVEVA Process Model Protocol (MCP) と統合され、自然言語のシミュレーションを可能にする。
2つのケーススタディは、異なるタスクの複雑さと相互作用モードにわたるフレームワークを評価する。
このフレームワークは、技術的な概念の翻訳と実証によって教育目的と、データ抽出の自動化、ルーチンタスクの高速化、サポートによって経験豊富な実践者の両方に役立ちます。
オーバーシンプル化、計算エラー、技術的ヒックアップといった現在の制限は専門家の監視を必要とするが、このフレームワークはLSMベースのエージェントが貴重な協力者になれることを示唆している。
論文 参考訳(メタデータ) (2026-01-15T12:18:45Z) - MCPAgentBench: A Real-world Task Benchmark for Evaluating LLM Agent MCP Tool Use [12.220519951554133]
MCPAgentBenchは、エージェントのツール使用能力を評価するための実世界のMCP定義に基づくベンチマークである。
評価には動的サンドボックス環境が使われており、エージェントにイントラクタを含む候補ツールリストを表示する。
さまざまな最新の主要言語モデルで実施された実験は、複雑で多段階のツール呼び出しの処理において、大きなパフォーマンス上の違いを示している。
論文 参考訳(メタデータ) (2025-12-31T02:09:48Z) - ML-Tool-Bench: Tool-Augmented Planning for ML Tasks [23.54937738755734]
ツール強化機械学習エージェントの評価のためのベンチマークを導入する。
私たちのベンチマークは、インメモリ名のオブジェクト管理を組み込むことで、従来のツール使用の評価を超えています。
我々のアプローチはReActよりも16.2%向上し、すべてのKaggle課題の中央値を取ります。
論文 参考訳(メタデータ) (2025-11-29T23:59:40Z) - MCPEval: Automatic MCP-based Deep Evaluation for AI Agent Models [76.72220653705679]
我々は、エンドツーエンドタスク生成とインテリジェントエージェントの深い評価を自動化するオープンソースのフレームワークであるMCPEvalを紹介する。
MCPEvalはメトリクスを標準化し、ネイティブエージェントツールとシームレスに統合し、評価パイプラインを構築するための手作業を排除する。
実世界の5つのドメインにまたがる実証的な結果から、ニュアンスのある、ドメイン固有のパフォーマンスを明らかにする効果が示された。
論文 参考訳(メタデータ) (2025-07-17T05:46:27Z) - MLE-Dojo: Interactive Environments for Empowering LLM Agents in Machine Learning Engineering [57.156093929365255]
自律型大規模言語モデル(LLM)エージェントを体系的に強化し、評価し、改善するためのガイムスタイルのフレームワーク。
MLE-Dojoは、現実的なエンジニアリングシナリオを反映した、多様でオープンなMLEタスクを慎重にキュレートする。
完全に実行可能な環境は、教師付き微調整と強化学習の両方を通して包括的なエージェントトレーニングをサポートする。
論文 参考訳(メタデータ) (2025-05-12T17:35:43Z) - ACEBench: Who Wins the Match Point in Tool Usage? [86.79310356779108]
ACEBenchは、Large Language Models (LLMs)におけるツールの使用状況を評価するための包括的なベンチマークである。
データを評価方法論に基づく3つの主要なタイプに分類する。
これは、異なるデータタイプにわたるエラー原因をよりきめ細かい検査を提供する。
論文 参考訳(メタデータ) (2025-01-22T12:59:08Z) - T-Eval: Evaluating the Tool Utilization Capability of Large Language
Models Step by Step [69.64348626180623]
大規模言語モデル (LLM) は様々なNLPタスクにおいて顕著な性能を達成した。
LLMのツール活用能力の評価と分析方法はまだ未検討である。
ツール利用能力を段階的に評価するためにT-Evalを導入する。
論文 参考訳(メタデータ) (2023-12-21T17:02:06Z) - Reasonable Scale Machine Learning with Open-Source Metaflow [2.637746074346334]
既存のツールを再購入しても、現在の生産性の問題は解決しない、と私たちは主張します。
私たちは、データ実践者の生産性を高めるために明示的に設計された、MLプロジェクトのためのオープンソースのフレームワークであるMetaflowを紹介します。
論文 参考訳(メタデータ) (2023-03-21T11:28:09Z) - PipeSim: Trace-driven Simulation of Large-Scale AI Operations Platforms [4.060731229044571]
大規模AIシステムのためのトレース駆動シミュレーションに基づく実験・分析環境を提案する。
IBMが開発したプロダクショングレードAIプラットフォームの分析データは、包括的なシミュレーションモデルを構築するために使用される。
独立して独立したイベントシミュレーターでモデルを実装し、実験を行うためのツールキットを提供する。
論文 参考訳(メタデータ) (2020-06-22T19:55:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。