論文の概要: Person Re-ID in 2025: Supervised, Self-Supervised, and Language-Aligned. What Works?
- arxiv url: http://arxiv.org/abs/2601.20598v1
- Date: Wed, 28 Jan 2026 13:35:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-29 15:46:06.946182
- Title: Person Re-ID in 2025: Supervised, Self-Supervised, and Language-Aligned. What Works?
- Title(参考訳): 2025年のリID: 監督、自己監督、言語対応
- Authors: Lakshman Balasubramanian,
- Abstract要約: 人物再同定(ReID)はコンピュータビジョンにおいて依然として難しい問題である。
本研究は、様々なトレーニングパラダイムをレビューし、ドメイン間アプリケーションにおける最先端のReIDモデルの堅牢性を評価する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Person Re-Identification (ReID) remains a challenging problem in computer vision. This work reviews various training paradigm and evaluates the robustness of state-of-the-art ReID models in cross-domain applications and examines the role of foundation models in improving generalization through richer, more transferable visual representations. We compare three training paradigms, supervised, self-supervised, and language-aligned models. Through the study the aim is to answer the following questions: Can supervised models generalize in cross-domain scenarios? How does foundation models like SigLIP2 perform for the ReID tasks? What are the weaknesses of current supervised and foundational models for ReID? We have conducted the analysis across 11 models and 9 datasets. Our results show a clear split: supervised models dominate their training domain but crumble on cross-domain data. Language-aligned models, however, show surprising robustness cross-domain for ReID tasks, even though they are not explicitly trained to do so. Code and data available at: https://github.com/moiiai-tech/object-reid-benchmark.
- Abstract(参考訳): 人物再同定(ReID)はコンピュータビジョンにおいて依然として難しい問題である。
本研究は、多種多様なトレーニングパラダイムをレビューし、ドメイン間アプリケーションにおける最先端のReIDモデルの堅牢性を評価し、よりリッチで伝達可能な視覚表現を通じて一般化を改善する上での基礎モデルの役割について考察する。
教師付き、自己監督型、言語対応モデルの3つの訓練パラダイムを比較した。
教師付きモデルは、クロスドメインのシナリオで一般化できますか?
SigLIP2のような基盤モデルはReIDタスクに対してどのように機能しますか?
ReIDの現在の監督モデルと基礎モデルの弱点は何か?
我々は11のモデルと9のデータセットを分析した。
教師付きモデルがトレーニング領域を支配しているが、クロスドメインデータに圧倒されている。
しかし、言語対応モデルは、明示的にトレーニングされていないにもかかわらず、ReIDタスクに対して驚くほど堅牢なクロスドメインを示している。
コードとデータは、https://github.com/moiiai-tech/object-reid-benchmark.comで公開されている。
関連論文リスト
- Intention-Conditioned Flow Occupancy Models [80.42634994902858]
大規模な事前学習は、今日の機械学習研究のやり方を根本的に変えた。
同じフレームワークを強化学習に適用することは、RLの中核的な課題に対処するための魅力的な方法を提供するので、魅力的です。
生成AIの最近の進歩は、高度に複雑な分布をモデリングするための新しいツールを提供している。
論文 参考訳(メタデータ) (2025-06-10T15:27:46Z) - Enhancing LLM Reasoning via Critique Models with Test-Time and Training-Time Supervision [120.40788744292739]
本稿では、推論と批判モデルの役割を分離する2人プレイヤパラダイムを提案する。
まず、批判データを収集する自動化およびスケーラブルなフレームワークであるAutoMathCritiqueを提案する。
テスト時間における難解なクエリに対するアクターのパフォーマンスを,批判モデルが一貫して改善することが実証された。
論文 参考訳(メタデータ) (2024-11-25T17:11:54Z) - ReVLA: Reverting Visual Domain Limitation of Robotic Foundation Models [55.07988373824348]
既存の3つのロボット基礎モデルの視覚的一般化能力について検討する。
本研究は,既存のモデルがドメイン外シナリオに対する堅牢性を示していないことを示す。
モデルマージに基づく段階的なバックボーンリバーサルアプローチを提案する。
論文 参考訳(メタデータ) (2024-09-23T17:47:59Z) - Comparison of self-supervised in-domain and supervised out-domain transfer learning for bird species recognition [0.19183348587701113]
別のタスクを支援するために事前訓練されたモデルの重みを移すことは、現代のディープラーニングの重要な部分となっている。
本実験は,鳥種認識のためのドメイン内モデルとデータセットの有用性を実証するものである。
論文 参考訳(メタデータ) (2024-04-26T08:47:28Z) - Data-efficient Large Vision Models through Sequential Autoregression [58.26179273091461]
限られたデータセットに基づいて,効率的な自己回帰に基づく視覚モデルを構築する。
このモデルは,高レベル・低レベルのセマンティック理解の両方にまたがる視覚的タスクにおいて,その習熟度をいかに達成するかを実証する。
我々の経験的評価は、モデルが様々なタスクに適応する際の機敏さを強調し、パラメータフットプリントの大幅な削減を図った。
論文 参考訳(メタデータ) (2024-02-07T13:41:53Z) - Robustness Analysis on Foundational Segmentation Models [28.01242494123917]
本研究では,セグメンテーションタスクのためのVisual Foundation Models (VFM) のロバストネス解析を行う。
2つの異なるデータセットを使用して、7つの最先端セグメンテーションアーキテクチャをベンチマークする。
VFMは、強靭性において不定形モデルをすべて上回るものではないにもかかわらず、圧縮誘起汚損に対する脆弱性を示し、マルチモーダルモデルはゼロショットシナリオにおける競争力を示し、VFMは特定の対象カテゴリに対して強靭性を示す。
論文 参考訳(メタデータ) (2023-06-15T16:59:42Z) - Recovering 3D Human Mesh from Monocular Images: A Survey [49.00136388529404]
単眼画像から人間のポーズと形状を推定することは、コンピュータビジョンにおける長年の問題である。
本調査は, 単分子型3次元メッシュ回収の課題に焦点を当てた。
論文 参考訳(メタデータ) (2022-03-03T18:56:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。