論文の概要: When More Data Doesn't Help: Limits of Adaptation in Multitask Learning
- arxiv url: http://arxiv.org/abs/2601.20774v1
- Date: Wed, 28 Jan 2026 17:00:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-29 15:46:07.030601
- Title: When More Data Doesn't Help: Limits of Adaptation in Multitask Learning
- Title(参考訳): より多くのデータが役に立たないとき:マルチタスク学習における適応の限界
- Authors: Steve Hanneke, Mingyue Xu,
- Abstract要約: マルチタスク学習問題では、関連するソースタスクから収集した異種データセットの集合が与えられる。
集約されたサンプルのみに基づくアルゴリズムは、タスク毎のサンプルサイズが制限されている限り、最適なリスクを保証できない。
我々は,タスク毎のサンプルサイズを任意に大きくする適応の強い不可能な結果を確立する。
- 参考スコア(独自算出の注目度): 33.14186919845971
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multitask learning and related frameworks have achieved tremendous success in modern applications. In multitask learning problem, we are given a set of heterogeneous datasets collected from related source tasks and hope to enhance the performance above what we could hope to achieve by solving each of them individually. The recent work of arXiv:2006.15785 has showed that, without access to distributional information, no algorithm based on aggregating samples alone can guarantee optimal risk as long as the sample size per task is bounded. In this paper, we focus on understanding the statistical limits of multitask learning. We go beyond the no-free-lunch theorem in arXiv:2006.15785 by establishing a stronger impossibility result of adaptation that holds for arbitrarily large sample size per task. This improvement conveys an important message that the hardness of multitask learning cannot be overcame by having abundant data per task. We also discuss the notion of optimal adaptivity that may be of future interests.
- Abstract(参考訳): マルチタスク学習と関連するフレームワークは、現代のアプリケーションで大きな成功を収めています。
マルチタスク学習問題では、関連するソースタスクから収集した異種データセットのセットが与えられ、各タスクを個別に解決することで達成できる以上のパフォーマンスを期待する。
arXiv:2006.15785の最近の研究は、分散情報にアクセスせずに、アグリゲーションサンプルのみに基づくアルゴリズムは、タスク毎のサンプルサイズが制限されている限り、最適なリスクを保証できないことを示した。
本稿では,マルチタスク学習の統計的限界を理解することに焦点を当てる。
arXiv:2006.15785 のノー・ノー・ランチ定理を超越して、タスク毎の標本サイズを任意に大きくする適応の強い不可能な結果を確立する。
この改善は、タスクごとに豊富なデータを持つことでマルチタスク学習の難しさを克服できないという重要なメッセージを伝える。
また、将来の利益になるかもしれない最適適応性の概念についても論じる。
関連論文リスト
- Data-CUBE: Data Curriculum for Instruction-based Sentence Representation
Learning [85.66907881270785]
本稿では,学習用マルチタスクデータの順序を列挙するデータカリキュラム,すなわちData-CUBEを提案する。
タスクレベルでは、タスク間の干渉リスクを最小化するために最適なタスクオーダーを見つけることを目的としている。
インスタンスレベルでは、タスク毎のすべてのインスタンスの難易度を測定し、トレーニングのためにそれらを簡単に微分できるミニバッチに分割します。
論文 参考訳(メタデータ) (2024-01-07T18:12:20Z) - Distribution Matching for Multi-Task Learning of Classification Tasks: a
Large-Scale Study on Faces & Beyond [62.406687088097605]
マルチタスク学習(MTL)は、複数の関連するタスクを共同で学習し、共有表現空間から恩恵を受けるフレームワークである。
MTLは、ほとんど重複しない、あるいは重複しないアノテーションで分類タスクで成功することを示す。
本稿では,分散マッチングによるタスク間の知識交換を可能にする新しい手法を提案する。
論文 参考訳(メタデータ) (2024-01-02T14:18:11Z) - Multitask Learning with No Regret: from Improved Confidence Bounds to
Active Learning [79.07658065326592]
推定タスクの不確実性の定量化は、オンラインやアクティブな学習など、多くの下流アプリケーションにとって重要な課題である。
タスク間の類似性やタスクの特徴を学習者に提供できない場合、課題設定において新しいマルチタスク信頼区間を提供する。
本稿では,このパラメータを事前に知らないまま,このような改善された後悔を実現する新しいオンライン学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-08-03T13:08:09Z) - Identification of Negative Transfers in Multitask Learning Using
Surrogate Models [29.882265735630046]
マルチタスク学習は、複数の関連するソースタスクで強化することで、低リソースのターゲットタスクのトレーニングに広く使用されている。
マルチタスク学習における重要な問題は、ターゲットタスクに利益をもたらすソースタスクのサブセットを特定することである。
本稿では,サロゲートモデルを用いてこの問題に対処する効率的な手法を提案する。
論文 参考訳(メタデータ) (2023-03-25T23:16:11Z) - Continual Learning with Distributed Optimization: Does CoCoA Forget? [0.0]
タスクが順次到着する継続的学習問題に着目する。
目指すのは、新しく到着したタスクに対して、以前見たタスクのパフォーマンスを低下させることなく、うまく機能することである。
分散学習アルゴリズムCOCOAについて検討する。
論文 参考訳(メタデータ) (2022-11-30T13:49:43Z) - Task Compass: Scaling Multi-task Pre-training with Task Prefix [122.49242976184617]
既存の研究では、大規模教師付きタスクによるマルチタスク学習がタスク間の負の効果に悩まされていることが示されている。
タスク間の関係を探索するために,タスクプレフィックスガイド付きマルチタスク事前学習フレームワークを提案する。
我々のモデルは、幅広いタスクの強力な基盤バックボーンとして機能するだけでなく、タスク関係を分析するための探索ツールとしても実現可能である。
論文 参考訳(メタデータ) (2022-10-12T15:02:04Z) - TaskMix: Data Augmentation for Meta-Learning of Spoken Intent
Understanding [0.0]
本稿では,タスクの多様性が低い場合のオーバーフィッティングという問題を,最先端のデータ拡張手法により悪化させることを示す。
本稿では,既存のタスクを線形に補間することで,新しいタスクを合成する簡単なTaskMixを提案する。
TaskMixはベースラインを上回り、タスクの多様性が低い場合の過度な適合を軽減し、高い場合でも性能が低下しないことを示す。
論文 参考訳(メタデータ) (2022-09-26T00:37:40Z) - Variational Multi-Task Learning with Gumbel-Softmax Priors [105.22406384964144]
マルチタスク学習は、タスク関連性を探究し、個々のタスクを改善することを目的としている。
本稿では,複数のタスクを学習するための一般的な確率的推論フレームワークである変分マルチタスク学習(VMTL)を提案する。
論文 参考訳(メタデータ) (2021-11-09T18:49:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。